Arealist Pro
User Manual

Version 8.5

e-Node
30 rue de la République
33150 Cenon
France

www.e-node.net

http://www.e-node.net

Copyright and Trademarks

Copyright and Trademarks

All trade names referenced in this document are the trademark or registered trademark of their
respective holders.

Arealist Pro is copyright Beckware LLC and exclusively published worldwide by e-Node.
4% Dimension, 4D Compiler, 4D, 4D Server, 4D Client, and 4D Insider are trademarks of 4D SAS.
Windows, Excel and Vista are trademarks of Microsoft Corporation.

Macintosh, MacOS and MacOS X are trademarks of Apple, Inc.

Table of contents

Copyright and Trademarks 2
Table of Contents 3
About Arealist Pro 13
Compatibility INfOrmationccoo e 13
QL= Tod]] [o7= 1S TU o] o o] o S0 13
Y=o 1] (= L[] o PP 14
o1 g Y Y o =T TP 14
Using the ArealiSt Pro IManUAL..............ueeiiiiiieiiiiiiiiieieie ettt e e e e e e e eeeee e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeees 15
Cross-ReferenCing FOIMAL ... e e e e e e e e r e e e e e e e eenns 15
CoMMANA LISt .o 15
CONSTANT LISt e 16
Command Descriptions @nd SYNTAXceeeiiiiiiiiiiiieie e s e e e e e e e snnr e e e e e e e e anans 16
Installing Areal.ist Pro 17
Installation: Plug-In bundle (MacOS and WINAOWS)..........ueueerriiiieiiriiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeees 17
= Tod ST = T E T @) g o711 o] L1 4 17
Configuring Arealist Pro 18
The Arealist Pro User Interface 18
i [5= T =T = PSP 19
e Yo] (= = PSP 20
107011 o T4V o | 1 o < 20
(@701 ¥ 0 1 TN oY 4] o [H PRSP PPPPPRRPPP 21
Calculated Columns when Displaying Fieldscouui e 21

S To 15 {10 To ISP 21

Y=Y =1 o] 12 TP P PR 21
Rows With MUIIPIE LiNES OFf TEXE.....eveieiieiiiieiieiiiitiiee ettt e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeenenees 22
7oL o 22
717 5 PP PPPPPPRRPPP 23
T 1] Vo F PR PPPPPRRIPPR 23
R To7 (0|11 T PP PPPPPRRIPPR 25
ST =1 = 1o o 26
Copy to Clipboard and Edit MENU..........coo i 26
= To J=Ta Lo [o] o PSPPSR 26

TO DFAQ @ ROW ..ttt et e et e s e e s e e s e e e s e e e s e e ene e e Re e e neenne e e neeenreennneeas 26

TO Drag @ COIUMIN ...ttt s e e s e e n e e s s e e e st e s e e e eme e e ne e e neesaneesnneesnneennneeas 27

D e=To o 1T IR (o J= T o (o TR UPR TR 27

D =To o[[aTe N (o 3= T @7 o] 8]0 o1 o I TP 27

o3 = To J= T = | RO RTRRRR 27

Table of contents

=T [[T aTo I (o J= T O =Y | R 27
=T = o] Y78 P 28
Lo TLAE= YA g To T = L= =] 1 Y 28
L0713 o i o] o PP 28
Data Selection and Edit Menu COMMEANGASooiiiiiieiiiieeeeiee e s 28
1 (=T [I - L= P 28
D=y o= = a1V U] o T o o TU o LR 29
Data Entry UsiNg ININE CONIIOIS......uuiiiiiie ettt st s sttt e e e et e s e e et e e e e e e e s nnne e e sneeeennneeas 30
Moving the CUITENt ENTrY Cell ..ottt e e e e e e s e e ene e e e eneeas 30
Ao T = L ¢= W =l YRR 30
Y=Y =T o] 14 (T T [£ 30
Resizable WIindows With ArealiSt PrO....... oot e e e e e e e e e e e e eaneeeeees 31
Creating an Areal.ist Pro object on a form 31
To configure a variable object as an Arealist Pro object ..., 31
AreaList Pro ObDJECT DIMENSIONSuuueiiiiiiiiiiiiiieeiieieeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeeeeeeeereeeeeseeeeeeeeeseeeeeeeeeeeeeeees 32
Creating an Drop Area 0n @ FOIM ..o, 32
Using the AreaList Pro COMMANASuuiiiiiiiiiiiiiiieieie ettt e e ee e e e e e e e e e e e e e e e e e e eeeeeeseeeeeeseeeeeeeeeeeeeees 32
Command Descriptions and SYNTAXcoceeeeiiie i 33
Causing an Areal.ist Pro Callback Method to EXECULEcooeeeiiiiiiiiie e, 33
LYY (o @ = g = P 33

Configuring Arealist Pro Using the Advanced Properties Dialog 34

To Display the Advanced Properties DialOguueuueeueeiiiiiiiiiiiiiiiieeeiieeieeeeee et eee e e e e e e e e e e e e e e e e eeeeeeas 34
Setting the Data t0 DiSPIay.....ueiiccicieiieiiee et e et e e e e e e s s s e e e e e e e e e e nnnrreeeeeeeeeaanns 35
DI 1=Y o1 =1 a o I Y g = |V TP 35
£ 01 F= YT e TN R T= oo (o £ 36
(@701 (80 T TN =1 £=T2= o117/ PP PRSP 37
DY £ 10 @70 [0 g o SRR 37
(T oL 1 @ o) T o TP 38
=T = o] /78S 38
Yo A V2T a oz =Y [@ o) 1o o - SRR 39
D =T o 11 T S P 39
=Y 1 1 PP 40
Configuring ArealList Pro Using Commands 41
Using Defined Constants With ArealiSt Pro ... 41
Specifying the Arrays 10 DISPIAYcceeiiureiiiiiiiie et e e s s ne e e e s e ane e e e e e nnneeas 41
INSerting and DeletiNg AFTAYSeeeieiiiiiiiie s nnnnn e e e e e e e e e e nnnnnees 43
Modifying Array Elements ProCedurallyeeeeeeiiiiiiiiiiiiieiieiieieeee ettt e e e e e e e e e e e e e e e e eeeeas 43
Specifying the Fields t0 DiSPIaYueeiieiiiiiiiiiiieee ettt e e e e e e s e e e e e e e e e nnreeeeeeeeeennnns 43
L 1= T 1= = 44

[0 T 1= £ 44

Table of contents

(@701 180 0T AT/ o 1101 PP OPPPPRRRPR 45
N == 1S o TN o 1Y T | U 45
(O7o]aaT o] (=) (I R oI R T o] =P 45
Partial ROWS DiSPIAYuueeiiiiiiiiiiesieiiiee e e sttt e e e et e e e st e e e e et e e e e s ssasre e e e e s ansaeeeessansseeeessassaeeeeeannnneneens 46
COolUMN LOCKING .. a7
T 1TV o =Y e o | P 47
(0] [0 GRS ORRR 48
(7o) (8]0 a1 T (=710 [T A= T a T I =o Yo (=T @] (o) =TT 48
T ON T S o=t (w3 @]] = R 48
PN (=T g LE=) o (o 1T O o] o PSSR v48
(@< 11 o= o3 @7] o] S 49
TS Tor=Y | E= T T o TU 070] o] = SRR 49
S (= 50
Column, Header, and FOOLEr STYIESocicuiiiiiieie ettt et e e e e e nne e e ennes 50
T oA S o=t oS 1§ 1= R 50
(O7= 11 o= o 14 [= < S 50
DAV e [T To T LT PP 51
R To o 1] Vo PP PPPPPPRFPPP 51
RS T = 01 o 1= S 51
RS0 A1 (=Yoo T 1 o [To- o) S 51
S T 1 = 1o S 51
g goTeT=To [0 = 1S To] o (] T FOu PRSP RTPRRRI 52
Sorting When Displaying FIEIAS.oiiiieeeee e 52
RS Te7 (o] |11 T PP PPPPPRRRPPR 52
ST =1 =T 1 Lo o 52
L0110 Yo Y- T o 53
o3 11 (=Y @] 11 o T 54
Scroll bars — Changing Displayed FOIMeeiiiiiiiiiire e e e e e e e e e 54
LY oSS 54
Details: Disabling an ArealiSt Pro Ar€a........cou oo 54
Drag and Drop — Changing FOrM Pagescoeeiiiiiiiiiiiieee e 56
Using AreaList Pro on a Resizable WINAOWcociiiiiiieiieeeiee e 56
Performance Issues with Formatting Commands...........coooiiiiiiiiii e 56
Lo Y0 [=T == oo B =T o [T 57
[(=TT LT g =Y | I oo o U o] o Yo o SR 57
The EScape SENtENCE SYSTEIM.......coi it esn e s ne e snn e e nnne e 57
Using Icons With ESCAPe SENTENCESccuiiiiiiiiieriee ettt n et s 58
Using Picture Library Items with ESCape SENTENCES.........ceiiiiiiiriieceeeee e 59
Longint ReferenCe SYSIEM ... b e n e e e e 60
101 (0 X @] o)1= Tox £ o 1= Lo =Y 60
(@70 0902 F= T T £ PRSP 61

AL_Register (registrationKey:S) = reSURCOAE:Looiieiiriiiee e 61

Table of contents

DY AV (== L3 4 (o T 62
AL_SetArraysNam (areaRef:L; columnNumber:l; numArrays:l; array1:S; ...; arrayN:S)

el (1011 (@7 o o L= I USROS 63
AL_InsArrayNam (areaRef:L; columnNumber:l; numArrays:l; array1:S; ...; arrayN:S)

gl =510 1o o [= S 64
AL_GetArrayNames (areaRef:L; resultArray:X; options:L) = resultCode:lccccoevevieiiiiie e, 66
AL_RemoveArrays (areaRef:L; columnNumber:l; NUMAITAYS:]).....cccocueiricieeceeee e e 66
AL_UpdateArrays (areaRef:L; updateMethod:]).........oeieeiir i 67
AL_SetHeaders (areaRef:L; columnNumber:l; numHeaders:l; header1:S; ...; headerN:S).........c........... 68
AL_GetHeaders (areaRef:L; headerList:X; options:L) = resultCode:Lcccoveviieriiiiei e, 69
AL_SetHeaderlcon (areaRef:L; columnNumber:l; iconAlignment:| picture:P; horPosition:l;

vertPosition:l; offset:l; SCAlING:]).....ee i e e e e 70
AL_SetHeaderOptions (areaRef:L; options:L; iconRef:L; callbackMethod:S)cccccoeeiiieiiiiieicee, 72
AL_GetHeaderOptions (areaRef:L; options:L; iconRef:L; callbackMethod:S).........cccecerviceeecier e, 73
AL_SetFooters (areaRef:L; columnNumber:l; numFooters:l; footer1:S; ...; footerN:S).....cccceevcvveeeneenne 74
AL_GetFooters (areaRef:L; footerList:X; options:L) = resultCode:Lccccevvcireeeeiiicieieee e, 74
AL_SetWidths (areaRef:L; columnNumber:l; numWidths:l; width1:l; ...; widthN:l) oo 75
AL_SetFormat (areaRef:L; columnNumber:l; format:S; columndust:l; headerJust:l;

footerdust:l; USEPICTHEIGNT:I) ...eeeieeeeeee e e e e ne e e e nnne e 76
AL_SetDefaultFormat (selector:L; fOrmatiS)........cocciie i e e e e e eane e 79
AL_GetFormat (areaRef:L; columnNumber:l; format:S; columnJust:l; headerJust:l;

footerdust:l; USEPICTHEIGNT:I) ...eoo e e s e e e e e e e nnne e 80
AL_SetHdrStyle (areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)......c.cccoeeeiieiciien e, 81
AL_GetHdrStyle (areaRef:L; columnNumber:L; fontName:S; size:l; styleNum:l)cccooeeiieieiiieicnees 82
AL_SetFirStyle (areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)cccooecieeeiieicciee e, 82
AL_GetFtrStyle (areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)ccooeieeeiieicciee e 83
AL_SetStyle (areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)........ccoooeeeieiiiiie e, 84
AL_SetDefaultStyle (selector:L; fontName:S; size:L; StyleNUM:L).....c.oovvcveriicie e, 85
AL_GetStyle (areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)ccoevevieeiiiiecciiee e, 86
AL_SetRowOpts (areaRef:L; multiRows:l; allowNoSelection:l; dragRow:l; acceptDrag:l;
moveWithData:l; disableROWHIGhIGNTI)oeeiieeecee e e 87
AL_GetRowOpts (areaRef:L; multiRows:l; allowNoSelection:l; dragRow:l; acceptDrag:l;
moveWithData:l; disableROWHIGhIGNLI)eeeeieee e e e e 89
AL_SetColOpts (areaRef:L; allowColumnResize:l; automaticResize:l; allowColumnLock:l;
hideLastColumns:l; displayPixelWidth:l; dragColumn:l; acceptDrag:l).......ccceveeeieriieeeceenieesie e 89
AL_GetColOpts (areaRef:L; allowColumnResize:l; automaticResize:l; allowColumnLock:l;
hideLastColumns:|; displayPixelWidth:I; dragColumn:l; acceptDrag:l)cccvvieeeericeneeree e, 92
AL_SetCellOpts (areaRef:L; cellSelection:l; moveWithData:l; optimization:l).........ccooeeereiieinieneeee 92
AL_GetCellOpts (areaRef:L; cellSelection:l; moveWithData:l; optimization:l)cccoeeerrcceeeericcneennn. 94
AL_SetInterface (areaRef:L; appearance:L; sortindicator:L; useEllipsis:L; ignoreMenuMeta:L;
clickDelay:L; allowPartialRow:L; useOldPopup:L; entryControls: L)ccceeeeeceeeeeier e 94
AL_SetMiscOpts (areaRef:L; hideHeaders:|; areaSelected:|; postKey:S; showFooters:l;

B ESYY 1Y/ [T [T a1 I o] S)T 98
AL_GetMiscOpts (areaRef:L; hideHeaders:|; areaSelected:|; postKey:S; showFooters:l;

B EYSY 1Y/ [T [T a1 o] S)T 99

6

Table of contents

AL_SetMiscColor (areaRef:L; selector:l; alpColor:S; 4dColor:l)cccevriiiiiiiieee e, 100
AL_SetMiscRGBColor (areaRef:L; selector:L; red:L; green:L; blUe:L)cccceevcieeeeiieieiiiee e, 101
AL_SetCopyOpts (areaRef:L; includeHiddenCols:l; fieldDelimiter:S; recordDelimiter:S;

LL2 o 1A= T o] =Y o3) SR 101
AL_GetCopyOpts (areaRef:L; includeHiddenCols:l; fieldDelimiter:S; recordDelimiter:S;

LT[0 L= o] o =Y) 102
AL_SetSortOpts (areaRef:L; automaticSort:l; userSort:l; allowSortEditor:l; sortEditorPrompt:S;
showSortOrder:l; showSortDirINAICALOr:I) ..eeo.eeeeieee e 103
AL_SetSortEditorParams (areaRef:L; windowTitle:S; prompt:S; labelList:X; columnNumberList:X)

Sl (=181 (o T L= I 105
AL_GetSortEditorParams (areaRef:L; windowTitle:S; prompt:S; headerList:X; sortList:X)

Sl (=011 (00T L= ISR 106
AL_SetSortedCols (areaRef:L; sortList:X) = resultCode:L........cccuveiviiiiiiie e 107
AL_SetForeColor (areaRef:L; columnNumber:l; alpHdrForeColor:S; 4dHdrForeColor:l;
alpListForeColor:S; 4dListForeColor:l; alpFtrForeColor:S; 4dFtrForeColor:l)oovivivevicieeeeieecieee 108
AL_SetForeRGBColor (areaRef:L; columnNumber:L; hdrForeRed:L; hdrForeGreen:L; hdrForeBlue:L;
listForeRed:L; listForeGreen:L; listForeBlue:L; firForeRed:L; firForeGreen:L; firForeBlue:l).................... 109
AL_SetBackColor (areaRef:L; columnNumber:l; alpHdrBackColor:S; 4dHdrBackColor:l;
alpListBackColor:S; 4dListBackColor:l; alpFtrBackColor:S; 4dFtrBackColor:l)cccevveeeecieeccieenns 110
AL_SetBackRGBColor (areaRef:L; columnNumber:L; hdrBackRed:L; hdrBackGreen:L; hdrBackBlue:L;
listBackRed:L; listBackGreen:L; listBackBlue:L; firBackRed:L; ftrBackGreen:L; firBackBlue:L).............. 111
AL_SetDividers (areaRef:L; colDividerPattern:S; alpColDividerColor:S; 4dColDividerColor:l;
rowDividerPattern:S; alpRowDividerColor:S; 4dRowDividerColor:l)ccceveiceeieiieeeee e 112
AL_SetCellBorder (areaRef:L; cellColumn:l; cellRow:L; borderLeft:l; borderTop:l; borderRight:l;
borderBottom:l; offset:l; width:F; redColor:l; greenColor:l; blueColor:l)coveceeeiecerieeeeeee e 114

AL_SetCellFrame (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; offset:l;
width:F; redLightColor:l; greenLightColor:l; blueLightColor:l; redDarkColor:l; greenDarkColor:l;

blueDarkColor:l; ClearAlIBOIAEIS:])cciciee e eeieee et e et e e e e tee e e e e e saae s s sr e e ennee e e ene e e eenneeesneeeeennes 115
AL_SetRGBDividers (areaRef:L; colDividerPattern:S; colDividerRed:L; colDividerGreen:L;
colDividerBlue:L; rowDividerPattern:S; rowDividerRed:L; rowDividerGreen:L; rowDividerBlue:L)........ 116
AL_SetRowStyle (areaRef:L; rowNumber:L; styleNum:l; fontName:S).......cccccoveeiieecceicce e, 117
AL_SetRowColor (areaRef:L; rowNumber:L; alpRowForeColor:S; 4dRowForeColor:L;
alpRowBackColor:S; 4dROWBACKCOION L)ceiiueiiiiiieieie ettt sneesneas 118
AL_SetRowRGBColor (areaRef:L; rowNumber:L; rowForeRed:L; rowForeGreen:L;

rowForeBlue:L; rowBackRed:L; rowBackGreen:L; rowBackBIu€e:L)..........ccceeerieeiiiiriciiiecceee e 119
AL_SetAltRowColor (areaRef:L; red:L; green:L; blue:L; optionS:L)......cccceereeeneeriieiiieeee e 120
AL_SetAltRowClr (areaRef:L; alpRowBackColor:S; 4dRowBackColor:l; options:L)cccceeeuveeennneen. 121
AL_SetCellStyle (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L;

cellArray:X; styleNum:l; fTONtNamME:S)ooeieie e e 122
AL_GetCellStyle (areaRef:L; cellColumn:l; cellRow:L; styleNum:l; fontName:S).......cccccceveiieeceennnnee 124
AL_SetCellColor (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L;

cellArray:X; alpForeColor:S; 4dForeColor:l; alpBackColor:S; 4dBackColor:l)cccoveeiereecieniiieeenne 125
AL_GetCellColor (areaRef:L; cellColumn:l; cellRow:L; 4dForeColor:l; 4dBackColor:l)........cceeeennneeennn. 127

AL_SetCellRGBColor (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X;
cellForeRed:L; cellForeGreen:L; cellForeBlue:L; cellBackRed:L; cellBackGreen:L; cellBackBlue:l) 128

Table of contents

AL_GetCellRGBColor (areaRef:L; cellColumn:l; cellRow:L; cellForeRed:L; cellForeGreen:L; cellForeBlue:L;

cellBackRed:L; cellBackGreen:L; CellBACKBIUEIL)c.coceeiiriieciieecee et 129
AL_SetCellSel (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X)........ 129
AL_SetSort (areaRef:L; columni:l; ...; COIUMNNEI ..ooiiiii e e 131
AL_SetCellValue (areaRef:L; row:L; column:l; alphaNumericData:S; pictData:P)cccccccvvveeevveeennnenn. 132
AL_SetLine (areaRef:L; FOWNUMDEIL) ..c.c..vviiiiie et e e e e e e e e e eane s 132
AL_SetSelect (areaRef:L; rOWSTOSEIECTX) ...ceiurieeiiiie et e e e e e eare s 133
AL_SetScroll (areaRef:L; verticalScroll:L; horizontalScrollil)...........ccoceerioieeiiiie e, 134
AL_SetColLock (areaRef:L; COIUMNS:I)eiieiiiiieeiecee e 135
AL_SetHeight (areaRef:L; numHeaderLines:l; headerHeightPad:l; numRowLines:l; rowHeightPad:l;
numFooterLines:l; footerHeightPad:])eoe i e e 136
AL_SetMinRowHeight (areaRef:L; MINROWHEIGNT:L).......coiiiieiiieieeeee e 137
AL_SetPictureEscape (areaRef:L; €SCAPECNAr:S)coiuiriiiiiiiiiie e 137
AL_GetPictureEscape (areaRefiL) = €SCapeChar:Scoociiiiiiiieniie e 138
Using the Callback Methods 139
T[] 00T PSPPI 139
L= U 11 o PSPPSR 140
Executing a Callback Upon ENtering @n Ar€accoocueeiiiaieieeeeieee et 140
Executing a Callback Upon EXitiNg @n Ar€a..........couiiiuiiiiiiiiiee et e e e e 141
Using Callback Methods During Data ENtry..........cooo i 141
Executing a Callback Upon Entering @ Cell.........couo i 141
Executing a Callback Upon Leaving @ Cellcocueiiiiiiiieiieieeieeie e 142
Compatibility Note — New Menu ArChitECIUIEcocueiiieieieecie e 145
Compatibility Note — AL ExitCell and AL Cell deselect action become AL ExitCell and AL Cell Validate... 145
Event Callback INTEITACEuuiiiiiiii et e e e e e e e e e e e e e e nnneeees 146
Lo T LY =T g TO I O= 1 o 7= T PSR 146
(@7 1[e10] =1 (Yol @o] [o 0 IK =111 oY= Lo PR 147
(@70 00 =TT L= PERRP 148
AL_SetMainCalls (areaRef:L; areaEnteredMethod:S; areaExitedMethod:S)cccoeeceiiiieiccieecnnen. 148
AL_SetCallbacks (areaRef:L; entryStartedMethod:S; entryFinishedMethod:S)cccccvvieercennienee. 149
AL_SetEventCallback (areaRef:L; callbackMethod:S; flag:L) = resultCode:l......c.ccccveeeevieeeccveecnnen. 151
AL_SetEditMenuCallback (areaRef:L; callbackMethod:S) = resultCode:L.........ccoovvecieercieeeccieecnen, 153
AL_SetCalcCall (areaRef:L; columnNumber:l; calcCallback:S).........ccceveieeiicieeciiee e, 155
Field and Record Commands 156
Using the Field Display Capability.........ccuueeiiiiiiiiiiiieee e 156
TEIMPOFANY AITAYS .eeeeeeee ettt e et e e et e e s e e s s e e s ae e e se e e s e e ease e e as e e emse e eme e e me e e ane e eaneeeaneesmneennneeanneenes 156
F V=N VTR Lo N 1= o RS PRPR 156
Compatibility Note — Field Display and CallDacKs.........cccuuueiriieiiiieiiieiieee e eee e 157
Setting a Calculated COIUMIN ... e e e e e e s s eanr e e e e e nnn e e e e e nnns 157
Setting the Callback MEthOd.........c..i i e e ne e 158

Table of contents

) (=T =1 o] 1 2R 158
QLI T= N 7= = LSO ST 158
11T o] F= 1Y T o T I = [P 159
Fields from Related ONe TabIES.......coouiiiiiiiieii ettt ne e 159
1Yo = 1TV L o [Tt] |1V SR 159
177 0 L= Y= Lo SR 159
(070) o)A R T 1T (o I a LY @] 1] 0] o Yo 7= o SRR 159
1 (=T =1 o] 1 2SR 159
D= o o o SRR 159
S T 11 SRR 159
Maximum Number of Records DiSPIayedccceeiciieiiiiie e e e e e e 160
Performance Issues When Displaying FIeldScccuieiiiiie i 160
(o) o1 0 =g (o £SO 160
AL_SetFile (areaRef:L; tableNum:l) = resutCOdE:L.........oviiiiiiieieee e 160
AL_SetFields (areaRef:L; tableNum:l; columnNumber:l; numFields:l; fieldNum1; ...; fieldNumN:I)
Sl (=510 (@0 T [IO SRUPRR 161
AL_GetMode (areaRefiL) = reSUCOAEILoooueiei e 162
AL_GetTable (areaRef:L) = tableNUMDEI Lcoo i 163
AL_GetFields (areaRef:L; tableArray:X; fieldArray:X) = resultCode:Lcccovvveviiereiciee e, 163
AL_InsertFields (areaRef:L; tableNum:l; columnNumber:l; numFields:l; fieldNum1:l ... fieldNumN:I)
S (=551 0] (O 0T [I OSSR 164
AL_RemoveFields (areaRef:L; columnNumber:l; numFields:l)coocerriciee i, 165
AL_UpdateFields (areaRef:L; updateMethod:])c.coeeeuiieicee e e 165
AL_SetSubSelect (areaRef:L; firstRecord:L; NUMRECOIAS:L)eeeecuieiiiiiie et 166
Enterability 167
TaT = Lo T D= = B = 1 SN 167
= T T T 0= - S 167
0= S 168
Click and Hold Data Entry INitIationcouo it e e 168
YV @Y =T o Y PP 168
0] 0T o =TS 169
Moving the CUITeNt ENTry Cell.........uuueiiieiiiiiiiiiiiitieeiiaetiesteeseaeesaasaaassssssssssssssasssssssssssnsssssssnsssnsssnsssnssnnnns 169
Compatibility Note — Adding or Deleting Rows from a Form Button............ccoooieiiiiiiiiiiiccccccicccccce, 170
Redrawing the Display from the Callback Method..............uueeiiiiiiiiiiiiiieiieiireeeeee e eeee e eeereeeeeeees 170
gL AT I 2= 1= = 11 Y/ RPN 171
(@70 0010 7T T L= PSP PPPPP 171
AL_SetEnterable (areaRef:L; columNumber:l; enterability:l; popupArray:X; menuPackRef:L).............. 171
AL_SetFilter (areaRef:L; columNumber:l; entryFilter:S)ccooeiiie e, 173
AL_SetEntryOpts (areaRef:L; entryMode:l; allowReturn:l; displaySeconds:l; moveWithArrows:l;
mapEnterKey:l; decimalCharForWin:S; useNewPopupICON:])........cccoiuiriieiiiiiie e 174

AL_SetEntryCtls (areaRef:L; columnNumber:l; cOntrolType:l)cocveeeieeriiinieeeeeeee e 176

Table of contents

AL_SetCellEnter (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L;

CellArray:X; enterability:l)c.eeee e e et e e e ear e e e e re e e enaneaeens 176
AL_GetCellEnter (areaRef:L; cellColumn:l; cellRow:L; enterability:l).......cccccoeceeeeiieriiiiicee e, 178
AL_GetCellMod (areaRef:L) = reSURCOAE:Lcccueiiiiiiiiiiee e 179
AL_GetCellValue (areaRef:L; cellRow:L; cellColumn:l; alphanumericData:T; pictData:P) 179
AL_SetCellHigh (areaRef:L; startPosition:l; endPosition:])cccooeiiiiiii i, 180
AL_GetCellHigh (areaRef:L; startPosition:l; endPosition:])..........cccoooeiriiiiiiiie e, 181
AL_SetCellicon (areaRef:L; cellColumn:l; cellRow:L; pictRef:P; iconAlignment:l; horPosition:l;
vertPosition:l; offset:l; SCAlING:]).....eeicieirieie e et e e e e e nre e 181
AL_GotoCell (areaRef:L; cellColumn:l; CEIIROW:L).....ccccueieieee e 184
AL_GetCurrCell (areaRef:L; cellColumn:l; CEIROW L)coeiciieeiieie e 185
AL_GetPrevCell (areaRef:L; cellColumn:l; CEIROW:L)......coeiieiieieie e 185
F T o 1= = U= 1 =Y I S 186
DI () (O 7= I = 1A= TRt I S 187
Dragging Commands 188
2T (o [(o 10 [T PSRRI 188
Technical Details of the Dragging Implementation ... 188
{ g F= L= T IR Tt ot T T oo T L= 188
FN =Y = W [T TSROSO 189
AreaList Pro on Multi-Page LayOuLS..........cceiiiieiieeee e e 190
MUtiple ROWS DIagQiNngecoueeeeueereeerreeiieesreeaeeesee e ese e s e sse e s e s e e s me e s neesneesaneesnneesnneeanneeannesnnenns 190
=T D= U= Y o =SS 191
Do o 1Y (Y- SR 191
(07010010 0= [o [J U 191
AL_SetDrgSrc (areaRef:L; sourceDataType:l; srcCode:S; ...; srcCode10:S)....omniiinirrieniiierieerieene 191
AL_SetDrgDst (areaRef:L; destDataType:l; dstCode1:S; ...; dstCode10:S)....ccceevvrverriireiierieereeene 192
AL_SetDrgOpts (areaRef:L; dragRowWithOptKey:l; scrollAreaSize:l; multiRowDrag:l; dragOntoRowz:l) 193
AL_GetDrgSrcRow (areaRef:L; SOUICEROW:L) ...cocuveiiieeiiieiiieie ettt 195
AL_GetDrgSrcCol (areaRef:L; SOUICECOLI).....cuiiiiiiiie e 196
AL_GetDrgArea (areaRef:L; destArea:L; destProcessID:l)........cccoieiiiieiiiee et 197
AL_GetDrgDstTyp (areaRef:L; destDataType:l).....c.uuuierrieirieeiie ettt 198
AL_GetDrgDstRow (areaRef:L; deSTROW:L)cueiiiiiiiiiciiee e 200
AL_GetDrgDstCol (areaRef:L; deSTCOLI)...ccueiiiiiiiiiiiie e 200
User Action Commands 202
AreaLliSt Pro’S POSTKEYeueeiiiiiiiiiieieeeeee ettt ettt et ettt et e et e e et e e e e e eeeeeeeeeeeeeaaeeaaaaaaaens 202
Determining the User’s Action on an AreaList Pro ObjJectccceeiiiiiiii i 202
= 0] 0] 203
MOUSE IMOVE EVENT......eeeeiiciie et e e e e e e s e e e e et e e e e e s e s aneee e e e e e nnaeeeeseannneeeeseannnnees 204
Single-click and DoubIle-ClICK EVENTScoiuiiieieee e 204
Ctrl/command-click in the Column Header EVENT........cooi o eieei it reee s s e e 205
Event Callback vs ODbJeCt MEthOQ..........uuiiiiiiiiiiicccree e ar s 205

Table of contents

Object Methods (or Project Methods) — On Plug in Area Eventcccveeciie e 205
Y=Y 01O | o= Vo €S 205
USIiNG BOth METNOAS.eieiie e e s e s s s e e e s e aane e e e s e ananrees 206
SIECTION. ... - 206
ST A (o = 206
ColUMN WIATNS ... 206
(©70118 o1 o TN [010 .4 = 1) o 1, 206
1700 0] 0= 1 o [, 207
AL_GetWidths (areaRef:L; columnNumber:l; numWidths:l; width1:l; ...; widthN:l) ..o, 207
AL_GetSort (areaRef:L; columni:l; ...; COIUMNN:L)..c..oiiiieiie e 208
AL_GetSortedCols (areaRef:L; sortList:X)) = reSutCode:L.......ccoeeiieiiiiiiiiee e 209
AL_GetColumn (areaRef:L) = clickedCoIUMN:L........ooiiiee e 209
AL_GetClickedRow (areaRef:L) = ClICKEAROW L ...ccciicuiiiiieeeceee ettt s 210
AL_GetSelect (areaRef:L; array:X) = reSUtCOAE:Lcceeiiiiiiieieee e 211
AL_GetCellSel (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X)
Sl (51011 0T = SRR 213
AL_GetScroll (areaRef:L; verticalScroll:L; horizontalSCrollil)oeeeueeiiciee e, 214
AL_GetColLock (areaRef:L) = COIUMNS:|ccccurieeieie et e e e e ennee s 214
AL_GetLine (areaRefiL) = SEleCtEAROW:L......cceii i e e 215
AL_SetCellText (areaRef:L; teXt:T; flagil)..ccuer e e 215
AL_GetCellText (areaRefiL; teXt:T; flagil) coouuee i 216
AL_GetLastEvent (areaRefiL) = eVeNtCOAE L. ..viiiicciiier et eecrree e essrer e e e s sareee e e s senrenee e s 217
Utility Commands 218
Do o 30 = - RPN 218
Drop Area Objects on @ Multi-Page LayOuUL..........ccuiiiiiiiiiie e 218
DIIST= o] g To D] o 30 Y (== T R 218
SO EQITOr e ————— 218
== =T =S PS 218
L TUTe e g T T (] ¢ 4= L1 T o PRSPPIt 218
(700 0] /0= 1 T 1= 219
B e A I B (o] oY Y=Y PP RPTSPR 219
AL_SetDropDst (dropAreaRef:L; dstCode1:S; ...; dStCOEN:S)......ccceiriciiiiiie e, 219
AL_ShowSortEd (areaRefiL) = SOrDONE:]eviieie et e e 220
AL_SetAreaName (areaRef:L; areaName:S)coiiiiie i e e e 220
AL_GetAreaName (areaRef:L; areaName:S).......ccocciirieciir et ree e e s e e e e e enne s 221
AL_GELVEISION = VEISION:IS.....ooiiiiie e rtie et e et e et e s e e e e e e e s ae e e e rate e e e nee e e easeeesneeeeenseeesnnneeas 221
AL_GetPluginPath = pathiS.......oe st e e e e nnne s 221
Obsolete Commands 222

Table of contents

Examples 223
Example 1 — A Simple ONe-Column LIStccoiiiiiieiiiiiiie e 223
Example 2 — Displaying Headers on the List ... 226
Example 3 — Displaying Data from @ Tablecccovuuiuioiii e 227
Example 4 — Selecting MUIEIPIE ROWSoeiiiiiiiiiiiieeieeeeeeeeeeeeeeee ettt e aaeeaaaeas 228
Example 5 — AlIOWING Data ENtry.....ccoooeiiiiiie ettt e e et e e e e e e e e e e e e e e e eeennnnnan 229
Example 6 — Restricting Data Entry t0 @ COlUMNcoiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee ettt 231
Example 7 — Validating Data ENtry ...ttt e e e e e e ee e 232
Example 8 — Prohibiting Data Entry to @ Specific Cell.......ouiimmiiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeee e, 234
Example 9 — Using the Event Callback INterface. ...ttt 236
Example 10 — Drag and Drop BeIWEEN Ar€aScccuuuuuiiiiiiiieiiiiiiiie e ettt e e e e e e e e e e e eenaaaaan 237

== o] [TaTo T B e=To K= Ta e [N I (o] o SRR 238

Introducing GEeNeric ProgramImMingcc.eeecceeeioiieeecciee e et e et e e et e e e ete e e e sae e e e sne e e eanre e e enneeeeaaneessnneeeennes 238

Updating Area Entry and Exit Callback MethOdScccvieiiiiiiiiiie e 240

YT A 071 o - T RSP R TP 241

[F=Tale | TaTo] ¢=To I Xl 1 o] o HUO PSPPSR 243
Example 11 — Getting the Last Event in @aCh Areaccuuiieccceeiiiee e 244
Arealist Pro Constant List 248
o I 0] o = SRR 248
F I o= (=T o PP PPPPPRPP 248
F I Y=o £ PP PPPPPPPP 248
Y I = o) YA 7= 1] 0T T = Lo 1 o o 1 S 249
Y I N = |V oo .o 1 =g o [S 250
F I =S T T o] 1 o1 1 4 F= U o LSRR 250
ALP COlUMN COMMENGASiiittieiee ettt e e e st e e e e e s s s e e e e e e e e s s s annb e e e e e e e e e asaannnneeeeeeeeeennnnnrnees 251
ALP ROW COMMENGS....itiiiiiiiiiiiiiiiiiiiei ittt ettt eeeee et eeeeeeeeee ettt eee ittt eeeeeeeeeeeeee et eeeete e et e eeteeeeeeaeeeeeaeaeaaeeaaeeeees 251
I o YA oo o] 0= 10T PR 252
ALP MiSC COMMIEBNUSttitiiiiiiiietieiieieieeeeteeeeeeeeeeeeeeeeeee e ettt eeeeeee et e eee e et ee e e e eee et e ee et e e et eeeteeeeeeeeeeeeeeaeaeeeaeeeeees 253
ALP Cell COMMIANAS....ciiiiiiiiiittee ettt e e e e et e e e e e s e et e et e e e e e e e s snne e eeeeeeeeeansnneeeeeeaeeennnnnreees 254
F NI = To I o0 o] .4 F=T Lo L= PSS 255
ALP Field COMMANGASeeeieiieeiieiiiieieteeetee et e e e e eeeee et ettt e ee et eeeeeeeeeeeeeeeeeeeeeeeeeetee et eeeteeetaeeeeaeeeaeeaeeeeeeaeees 255
F I Y o] o 1= =T = L Lot @0 g = = U £ PSSP 255
ALP Edit MenU CONSTANTSuiiiiiiiiii it e e e e e s e e e e e e s s s e e e e e e e e e e eannnrnees 256
ALP FOrmat/Style CONSTANTS......uiiiiiiiiiiiiieiieceee ettt eeeseeeeeeeeeeeeeeeeeaneeaeeeanes 256

Arealist Pro Command Reference — Alphabetical 257

About Arealist Pro

About Arealist Pro

Arealist Pro is an easy-to-use tool for implementing scrolling lists on 4" Dimension layouts. It lets you
display arrays or fields.

Because Arealist Pro is a plug-in area, it is very fast, and provides capabilities not available to you using
native 4D commands and objects, such as horizontal scrolling, user-resizable columns, automatic
column sizing and formatting, copy to the clipboard, drag and drop interfaces, and more.

The contents of a list can even be altered directly by entering data into the ArealList Pro area using typed
characters and popup menus, with full control over data entry.

Operation is extremely fast, and control objects (scroll bars, buttons, etc.) follow the MacOS and
Windows interface.

Arealist Pro supports the interface standards introduced with MacOS X, WinXP and 4D 2004.

Data is passed to Arealist Pro using 4D arrays, or field numbers. If only two columns need to be
displayed, create two arrays or specify two fields and pass them as parameters to Arealist Pro.
No string parsing or other contortions are needed.

Arealist Pro can be used with just one command — no special formatting is required. A powerful
Advanced Properties Dialog lets you configure an Arealist Pro object by simply pointing and clicking.
For those cases when more control is needed, several optional commands give you complete control
over the appearance of the area.

Special tools are implemented if you wish to customize the appearance and configuration of AreaList
Pro, allowing the customization to be implemented rapidly.

Compatibility Information

Arealist Pro is fully compatible with 4D /4D Server 2004 or greater (including 4D v11 SQL and 4D
v12). It is compatible with MacOS and Windows clients.

Technical Support

Technical support for AreaList Pro will be provided electronically via e-mail or our online support
reporting system. You are encouraged to use the online web reporting form as it will be correctly
routed to the appropriate support personnel.

www.e-node.net

Compatibility Information - Technical Support 13

http://www.e-node.net

About Arealist Pro

Registration

Arealist Pro requires a registration key to “unlock” the product making it a full working version. Call the
AL_Register command (see AL_Register for complete details) in the On Startup method.

Without the registration key, ArealList Pro will operate in demonstration mode during 20 minutes.
Version 8.3 introduced a new license design. Previous licenses will not work with this release.

In order to activate AreaList Pro 8.3 and above, you need to require a new license key from e-Node.

License types

Like all e-Node plug-ins, ArealList Pro offers six different license types. There are no such things as
MacOS vs Windows or Development vs Deployment:

Single user license. This license allows development (interpreted mode) or deployment
(interpreted or compiled mode) on 4D Standalone or Runtime. Since the registration key is
linked to a specific 4D license, you need to provide the number returned by the 4D command
GET SERIAL INFORMATION (first parameter). A new license will be provided for free at any
time if you change your 4D version and/or get a new 4D registration key.

Small server. This license allows development (interpreted mode) or deployment (interpreted
or compiled mode) on 4D Server up to 10 users. The registration key is linked to your 4D Server
license just as above.

Medium server. This license allows development (interpreted mode) or deployment (inter-
preted or compiled mode) on 4D Server up with 11 to 20 users. The registration key is linked to
your 4D Server license just as above.

Large server. This license allows development (interpreted mode) or deployment (interpreted
or compiled mode) on 4D Server over 20 users. The registration key is linked to your 4D Server
license just as above.

Unlimited Single User. This license allows development (interpreted mode) or deployment
(interpreted or compiled mode) on as many 4D Standalone, Runtime or Engine copies that run
your 4D application(s). This is a yearly license, which expires one month after the date when it
is to be renewed. The expiration only affects interpreted mode. Compiled applications using an
obsolete license will never expire.

Unlimited OEM. This license allows development (interpreted mode) or deployment (in-
terpreted or compiled mode) on as many 4D Server (of any umber of users), 4D Standalone,
Runtime or Engine copies that run your 4D application(s). This is a yearly license, which expires
one month after the date when it is to be renewed. The expiration only affects interpreted mode.
Compiled applications using an obsolete license will never expire.

A 4D database used to retrieve your 4D serial information is available from the following link:
http://www.e-node.net/ftp/GetSerialInfo

Registration-License types 14

http://www.e-node.net/ftp/GetSerialInfo

About Arealist Pro

Using the Arealist Pro Manual

General information about the ArealList Pro user interface is discussed in The Arealist Pro User Interface.

An overview of the AreaList Pro commands and usage is covered in the following sections:

Configuring Arealist Pro Using Commands

Field and Record Commands

Enterability
Dragging Commands

User Action Commands

Utility Commands

Commands are organized by topic into individual chapters. Each chapter begins with an overview
of the topic, and how to use the different commands. Each command is then covered in detail, and
examples provided.

Commands and parameters that are new in Arealist Pro version 8 are displayed in green characters.

Items that are new or modified in Arealist Pro versions 8.1 - 8.3 are displayed in pink (magenta) characters.

Items that are new or modified in Arealist Pro version 8.5 are displayed in orange characters.

If you are unable to resolve a problem using this manual, you can contact our Technical Support
Department. See Technical Support.

Cross-Referencing Format

Each time a command or section is mentioned, a cross-reference is given through hyperlinks to let you
quickly find the definition for the command.

Command List

The alphabetical list includes the parameters for each command and the page number/link to the
command definition.

Using the Arealist Pro Manual - CrossReferencing Format - Command List 15

About Arealist Pro

Constant List

A full list of AreaList Pro constants is also available, organized by theme with each constant’s
actual value.

Command Descriptions and Syntax

Each ArealList Pro command (or routine) has a syntax, or rules, that describe how to use the command
in your 4D database. For each command, the name of the command is followed by the command’s
parameters. The parameters are enclosed in parenthesis, and separated by semicolons.

Following the command syntax description, an explanation of the command’s parameters is provided.
For each parameter, the type of the parameter and a description is shown. Examples are provided for
each of the commands, showing the syntax as well as how the various commands are used together.

The first parameter for most commands is the long integer reference of the AreaList Pro object on the
layout. This parameter is required to allow the commands to operate on the correct object.

Some routines are actually functions, which return a long integer result value. Unless otherwise
indicated, the value is 0 when no error occurred, or -50 (paramErr) when a wrong parameter
has been received.

In some instances (unlikely with the recent hardware and OS versions), AreaList Pro routines can also
return memory manager errors.

Constant List - Command Descriptions and Syntax 16

Installing Arealist Pro

Installing Areal.ist Pro

This chapter outlines the steps necessary for installing ArealList Pro into your existing applications.

Arealist Pro must be installed (and de-installed) using the bundle installation method described herein.

Installation: Plug-In bundle (MacOS & Windows)

Arealist Pro is provided as a plug-in bundle for 4D 2004, 4D v11 SQL, 4D v12 or higher.
This single version will work with MacOS and Windows deployments (you don’t need separate
MacOS and Windows versions).
1 — Locate the folder where ArealList Pro has been installed on your computer.
2 — Locate the 4™ Dimension structure where you wish to install the ArealList Pro plug-in.
3 — If you don’t already have a directory labeled “Plugins”, create one now.
4 — Copy the following plug-in to your applications Plugins folder: alp.bundle.

Backwards Compatibility

If you are using AreaList Pro in an existing application, please be aware of the following changes.
Failure to follow this information will result in a -9939 error (see figure below) when using AreaList Pro
in heterogeneous applications (with both MacOS and Windows clients).

Upgrading to Arealist Pro v8.3 or greater from pre-8.3 versions requires that you recompile your
applications and you must make sure you have matching versions across Mac/Windows clients if you
are using multi-platform deployments. Arealist Pro 8.3 is NOT drop in compatible, if you drop in
Arealist Pro 8.3 or greater into an existing compiled application, you will receive the following error
dialog.

Error

Error #-9939

AreaList™ Pro Pkg Bundle

The plug-in method cannot be executed.

ERROR WHEN MISMATCH VERSIONS EXIST

Installation: Plug-n bundle (MacOS & Windows) - Backwards Compatibility 17

Configuring Arealist Pro - The Arealist Pro User Interface

Configuring Areal.ist Pro

ArealList Pro is comprised of a suite of plug-in routines and 4" Dimension methods, designed to extend
the existing 4" Dimension command set, providing a variety of miscellaneous utility routines.

Arealist Pro Plug-In routines are routines that exist in the AreaList Pro plug-in and do not require
an addition installation or configuration actions outside of standard plug-in installation.

Just make sure you have successfully registered your copy of ArealList Pro by calling the plug-in’s
registration routines (please see AL Register for more information).

$ret:=AL_Register|"registrationKey")

The ArealList Pro User Interface

Arealist Pro displays a scrolling area on 4D layouts, as shown below.

8eoe6

Arealist™ Pro 7.9 Feature Demonstration

Arealist™ Pro Configuration Options Demo

Version 7.9.1 @

0 of 177 items selected, 177 total items

First Name [Last Name [Salary & Arrival ‘ Male |tw ‘s-.«:c- Zip Country Title |w ‘ & Bnth:\‘
Mike Eni $ 100000 siomE Tapei Ta 94065 ROC Vice-President 05/18/19 4
s 6848436 TNEAME. [Tulsa oK 95014 UsA Vice-President 05/06/19 ¥
$ 6384798 7:02AME- @ Jersulaem 95014 Israel Programmer 11/14/19
s 8341074 7somMEe @ Brooklyn NY 94086 UsA Manager 11/29/19
o $ 9001986 &izaMB. Baghdad 43220 Iraq Stenographer R. 06/11/19
Rick a s 5090838 BI0AME. @ Tulsa oK 80302 USA Sales Rep 05/27/19
m Bartim $ 2141888 1250miB. @ Dallas 95190 Iraq Manager 07/28/19
Randy Battat s 2689806 B:s2AME- London MI 95014 USA System Anal... 12/17/19 4
Lofty Beck $ 8562750 1207 B # Los Angeles ca 06105 UsA Manager 04/13/197 |
e ———— E) alv
Action: None Display Arrays | 3] (Column List...)
Cenfiguration Optiens Cenfiguration Optiens
Columns
A : Selection Mode:
Disable Row Highlightin = -
= amaneng Lock: 2 Tj Hide: 0 Tj

] Resort in During Phase
[} Enable Sort Editor m
) Enable Line Dragging

Multiple Lines T]

Selected Sort
Order:

Display: 15 ﬂ

Scroll Bars

@ Enable Column Dragging
) Allow No Lines in Single-Line
™ Resizable Columns v

Appearance:
Show Focus: | Platform Default | 3)
Column Style: | Default (Automa... [3)

| Disable ALP Area

@ Vertical Scroll Bars
@ Horizontal Scroll Bars

Appearance Man. ﬂ @ Alternate Row Background [Set.. |
| Sort Icon Above Scrollbar

[Disable Ellipsis

Column Settings |

(Show Sort Editor)

AREALIST PRO PLUG-IN AREA

Arealist Pro provides the ability to display up to 512 columns.

The Arealist Pro User Interface

Headers

Above the scrollable ArealList Pro area, there may be a row of cells called the Header area.

This area is usually used to contain a description of the data displayed in each of the columns.

The Header area is also used to control the sorting of the data and column dragging, if these features

are enabled. The Header area is not editable by the user, and will not scroll vertically with the rest of the
Arealist Pro area. See AL _SetHeaders and AL_GetHeaders.

The user can click on a header to sort the list using that column. See Sorting.

The user can click and drag a header to move a column to a new location. See Drag and Drop.

ArealList Pro includes modern column headers, including direct platform detection. The column headers
include the standard sort indication arrow (which can be enabled/disabled procedurally) to notify users
which order the column is sorted.

First Mame |Last-Name ¥ | Salary B Arrival
Todd Zipnick $ 52,230.08 917 AM
Bob Yuderman L 22,295.00 &:24 AM
Jeffrey Y oumg] 49,687.96 7:48 AM
Del Yocam % 63,118.86 1016 PM
Curtis Wright 3 84,651.42 1:34 AM
William Woodward % 2660210 830 AM

MAcOS X StyLe CoLUMN HEADERS

First Name | Last Mame | Salary B3 Arrival

Todd Zipnick 5 5223008 917 AM &,
Bob Yuderman $ 22,295.00 6:24 AM &
Jeffrey Young $ 4968796 7:48 AM &
Del Yocam $ 63,11886 10:6PM &
Curtis Wright 3 84,651.42 1:34 AM &,
William Woodward % 26,602.10 830 AM B,
i - i ———— iliﬁ

WINXP StyLe CoLUMN HEADERS

Headers 19

The Arealist Pro User Interface

Footers

Below the scrollable Arealist Pro area, there may be a row of cells called the Footer area.

This area can be used to store information about the column, such as the total of a numeric
column’s data. The Footer area is not editable by the user, and will not scroll vertically with the rest
of the ArealList Pro area. See AL SetFooters and AL GetFooters.

Column Widths

The user can resize any column by moving the arrow over the line dividing the columns in the header
area. The pointer will change to the shape 4D uses in the Quick Report Editor for column resizing.
Drag this column divider to resize the column.

AL SetColOpts can be used to disable this feature.

A column cannot be resized to greater than the width of the list area minus 20 pixels.

Arealist Pro will automatically truncate data and display the standard ellipsis when columns

are resized smaller than the displayed data. Like the column sort icons, this setting may be procedurally

enabled/disabled.

Footers - Column Widths

20

The Arealist Pro User Interface

Column Locking

One or more columns on the left side of the list can be locked in place to prevent them from scrolling

horizontally. The user can adjust the lock position by dragging the Column Lock control, shown below.

866
L:T_@ New %Dele‘:e @ Find |}‘€ Sort

Big File: 57081 of 57081

B show Al [Z=| Selea [l Print
=]

57081 Records Displayed, 0 Selected

Setting Name: Default ;-l}v|

Find: [Last Name k@i [begins with lv&i : Active Only
"E'E e = |Companv Name ‘Last Nal i -'-".’{Hire Date |Industry |‘3:l'.
Berklea Abbitt # 062572002 Training A
[% Gt Raads O MITLCS Abhitt : 06/25/2002 v
!_El Hire dateJune 25 2. | & gcs publicatians Abbitt s 0B/25/2002 Communication m
[joelle & Macworld Abbott : 06/25/2002
[# Last name Abel) J.M.Errone Co., Inc. Abbott ¢ 0B/24/2002 i
; S # LINCOLN FILENE CENTER, TUFTS Abbott s 06/25/2002
"' o= ¥ NAHANT SCHOOLS Abbott = 06/25/2002
[Last name is Abbort & STRATEGIC RELATIONSHIP RESUL Abbott = 01/26/1987
¥ I Sets # COMPPRO COMPUTER CORP = 06/25/2002
BB Active Jacobson [12] # DREXEL UNIVERSITY s 06/25/2002
EHer] PORTFOLIO SOFTWARE : 0Bf25/2002
ecords [4] = B
' SPECULAR 06/25/2002
EH renamedset [3) & COMPUTERNIKS : 6/25/1997 Computer
! LARSEN OF CT, INC : 06/25/1997
BTZ ELECTRIC CO. = 06/25/1997 Electronics s
' Independence Public Schools = DBRf25/1997 =
+ - | e — Sy ey

COLUMN LOCKING

When columns are locked and the user clicks in the horizontal scroll bar, the locked columns will not
scroll. This capability is similar to the Freeze Panes feature in Excel. When the column lock position
is adjusted, the list will automatically scroll to the full left position to provide feedback to the user.

Calculated Columns when Displaying Fields

The user interface when calculated columns are displayed is essentially the same as with fields.
The few minor differences are explained below.

Sorting

Column headers of calculated columns will be dimmed in the Sort Editor.

Enterability

Calculated columns will not be enterable either by typing or by using popups.

Column Locking - Calculated Columns when Displaying Fields

21

The Arealist Pro User Interface

Rows with Multiple Lines of Text

Arealist Pro allows individual rows in the list area to contain more than one line of text; however,
all rows in the area will be of the same height.

Color

Arealist Pro allows the entire range of 256 colors in the 4D palette, or the 10 colors of the built-in
Arealist Pro palette. AreaList Pro also provides the ability to set the foreground and background colors
using standard RGB colors.

Arealist Pro foreground colors can be applied to columns, individual rows, cells, headers, and footers.
Background colors can be applied to the list area, individual rows, cells, the header area, and the footer
area.

In addition, ArealList Pro provides the ability to display default row color (without having to use Arealist
Pro callback to procedurally set row colors).

Using AL _SetAltRowColor or AL SetAltRowClr routines, you can configure ArealList Pro to automatically
display custom row colors, including shading rows which do not contain any information.

|Fir3tName lLastName Salary |§E§ Arrival | Sex |l2it'_.,4I

MAcOS X DerauLt Row COLORING

First Mame | Last N.. | Salary a5 Arrival Sex

L

WINXP DerauLt Row COLORING

Rows with Multiple Lines of Text - Color 22

The Arealist Pro User Interface

Styles

Arealist Pro supports all standard styles used by the Operating System, including Bold, Italic, Underline,
Outline, Shadow, Condensed, or Extended, or any combination of these. These styles may be applied to
columns, headers, footers, individual rows or cells in an ArealList Pro area.

Sorting

The list can be sorted in ascending (A to Z) order by clicking a column header, and sorted in descending
order by option/alt-clicking the column header. Sorting the list actually sorts the 4D columns displayed
in the list. If a column contains a picture, clicking its column header will cause it to highlight, but no
sorting will occur.

Arealist Pro includes a sort direction indicator, which can be displayed in the upper right area.

This indicator can be clicked to change the sort order of the primary sort column. Alternately, you can
create your own icon using the AL_SetHeaderOptions routine to override the sort direction indicator.

In addition to clicking a column header to sort, there is a Sort Editor available to allow sorting on
multiple columns (such as Last Name, First Name). To access this feature, ctrl/command-click the
header area of the AreaList Pro object.

The Sort Editor matches the current application platform. There are a suite of routines included
in AreaList Pro which provide developers with the entry points to customize (read/write) information
in the Sort Editor. The AreaList Pro default Sort Editor is displayed as a resizable window.

v s — cc— .

Sart Options
Select columns to sort

ﬂ: First Name ¥ Last Name
.ﬂf Last Name v City

0.5 salary
2$2 Arrival

s Male

A city

.ﬂf State

A zip

ﬂ_‘ Country
£ Title
Aomi

1] Birthdate
215 Code

ﬂ: Salutation

E Date Entered

[l

| Cancel | (Sort \j

MacOS X Sort EDITOR

Styles - Sorting 23

The Arealist Pro User Interface

Select columns to sort

/A First Mame _| & First Mame
A Last Name ¥
03

23 Arrival
Sex

City
State
Zip
Country
Title

(4
Birthdate

b
o = [

Cancel Sort

g 3> 3w e B B B
|- 2|

v bl

WINXP Sort EDITOR

The area on the left is a list of the columns displayed in the ArealList Pro object. An item can be added
to the sort order list on the right by dragging it over the rectangle on the right or by double-clicking.
To remove an item from the sort order list, drag it outside of the sort order list area.

To change the direction of the sort:

1 — Click the arrows to the right of each item in the sort order list (up arrow is ascending
order, down arrow is descending). Although picture columns cannot be sorted, they will
appear in the list of columns. However, the item(s) for the picture column(s) will be
disabled and cannot be dragged into the sort order list.

2 — Click the Sort button.

When displaying fields, the following features are present.
indexed fields will be bold in the Sort Editor
fields from related one tables will be dimmed in the Sort Editor

Sorting 24

The Arealist Pro User Interface

Scrolling

The list can be scrolled in the following ways:
Clicking the arrows and other scroll controls.

Using the keyboard Arrow keys. Each press of the Arrow key will scroll the list one row
or column in the direction corresponding to that key. Option/alt-Arrow will scroll the list
to the top, bottom, far left, or far right. ArealList Pro also has a scrolling option available
when using the up/down arrows during multi-rows selections. Using the AL SetCellOpts
routine, you can activate the scrolling options when multiple rows are selected.

Typing on the keyboard. As characters are typed, the current sort column will be used

to vertically scroll the list. If there is a pause between typed characters, then the scrolling
action will “reset”. The pause time is equal to the double-click time set in the System settings.
This feature is disabled when displaying fields. See Specifying the Fields to Display for

more information.

Clicking the list area and dragging the mouse arrow outside of the list area. This action will
scroll both horizontally and vertically.

Dragging a row or column. When dragging a row or column within an Arealist Pro object,
or to another valid AreaList Pro object, the destination area may scroll. See Drag and Drop.

Arealist Pro provides support for live scrolling (click and dragging scrollbar will move
the Arealist Pro area accordingly).

In addition, AreaList Pro includes support for wheel mouse navigating.

When an Arealist Pro area is active and you move the wheel mouse up or down, Arealist Pro will
respond accordingly as if the user clicked on the scroll buttons.

When using the wheel mouse, you can scroll the AreaList Pro area horizontally by holding down the
shift key.

When ArealList Pro has been configured to allow multiple rows selection, pressing the up or down Arrow
keys, AreaList Pro will correctly respond and move accordingly. The following conditions have been set:

when the up Arrow key is pressed, the row prior to the first highlighted row will be selected
and will be the new active row

when the down Arrow key is pressed, the row after the last highlighted row will be selected
and will be the new active row

This interface is off by default (for backwards compatibility with previous applications) and may be
activated using the AL_SetCellOpts routine (second parameter, activation).

The following parameter will activate the new keyboard scrolling options when using multi-rows
selection option:

AL _SetCellOpts (elist;3;...) ‘turn on enhanced Arrow key support

Scrolling 25

The Arealist Pro User Interface

Selection

The user can create a selection in an AreaList Pro area in one of several ways: single-row, multiple rows,
single cell, and multiple cells.

In single-row selection, clicking a row will select that row, and only one row can be selected at a time.
In multi-rows mode, the user can select multiple rows by dragging, shift-clicking (continuous selection),
or ctrl/command-clicking (discontinuous selection).

In single cell mode, clicking a cell will select only that cell, not the entire row. In multiple cells mode,
the user can select none, one, or several cells. The effect of any of these methods on already selected
rows or cells will be the same: the rows or cells will be deselected.

The Edit menu Select All command will select all rows when the multi-rows selection option has been
enabled, or select all cells when the multiple cells selection option has been enabled.

Copy to Clipboard and Edit Menu

Rows selected in an Areal.ist Pro object can be copied to the clipboard via the Edit menu Copy
command.

Because of the limitations of the System clipboard (when a selection of rows are copied to the
clipboard, pictures will not be copied) a blank field will appear on the clipboard where the picture
would have been.

Copying rows to the clipboard will not be allowed when displaying fields. The Copy menu item will be
disabled when fields are displayed.

In addition, AL SetEditMenuCallback will install a callback method, which will be called when any Edit
menu action occurs. See Using the Callback Methods.

Drag and Drop

The drag and drop feature of ArealList Pro allows the user to drag a row or column in an

Arealist Pro object to a different position within that same area. This feature may also be used to drag
a row or column to a different ArealList Pro object, to a CalendarSet object, or to an AL_DropArea
(see Drop Area), on the same layout or a different layout.

To Drag a Row

Arealist Pro allows row dragging to be initiated by either option/alt-clicking on a row and dragging it,
or by just dragging the row, depending on how Arealist Pro is configured. When the row is clicked on
and dragged, it will move freely with the pointer.

If the row is not accepted by the destination object a rectangle will zoom back to the origin of the drag.

Selection - Copy to Clipboard and Edit Menu - Drag and Drop 26

The Arealist Pro User Interface

The user selects multiple rows by ctrl/command-clicking or shift-clicking. If the dragRowWithOptKey
option of AL_SetDrgOpts is set to 1, then the user can also select multiple rows by dragging. Once the
row(s) are selected, the user may click (or option/alt-click) to drag them. An outline of the row(s) will
follow the pointer (cursor) location until the mouse is released.

You can also specify row dragging to insert between rows or drag onto rows.

To Drag a Column

Arealist Pro allows column dragging to be initiated by clicking the column header and dragging.

If the userSort option of AL SetSortOpts is disabled, column dragging will begin immediately, and an
outline of the column will appear. If user sorting is enabled, the drag begins when the mouse pointer
is greater than 20 pixels to the left or right of the column, or greater than 30 pixels above or below the
column header.

When the column is clicked on and dragged, it will move freely with the pointer. If the column is not
accepted by the destination object a rectangle will zoom back to the origin of the drag.

Dragging to a Row

The list will scroll when the arrow is moved within the number of pixels of the AreaList Pro object
specified in AL_SetDrgOpts. If row dragging is configured to insert rows, a small triangle will appear
adjacent to the left side of the destination object, indicating the insertion position.

For dragging onto rows, the destination row will highlight.

Dragging to a Column

The list will scroll when the arrow is moved within the number of pixels of the AreaList Pro object
specified in AL_SetDrgOpts.

A small triangle will appear adjacent to the top of the destination object, indicating the insertion
position.

To Drag a Cell

The user drags a cell by clicking upon it and dragging it.

An outline of the cell will follow the pointer (cursor) location until the mouse is released.

Dragging to a Cell

When enabled, the user can drop an item as a row, as a column or as a cell. If the destination is a cell,
an outline will be shown inside the cell that the cursor is over to indicate where the item will be

dropped.

See Dragging Commands for more information.

Drag and Drop

27

The Arealist Pro User Interface

Enterability

Initiating Data Entry

Data entry using typed characters may be initiated on an Arealist Pro object by several programmable
methods, all of which require clicking in the cell with or without a modifier key. For example, data entry
on a given cell could be initiated upon a single click in that cell, a double-click, or a double-click along
with the option/alt, ctrl/command, shift, or control key.

Click and Hold

Arealist Pro also provides the ability to initiate data entry by clicking and holding the mouse button
down in the cell where you wish to perform data entry. Using this interface, users are still able to
select rows via single-click and double-click. If you wish to initiate data entry using this method,
use the AL_SetEntryOpts routine as follows:

AL_Setinterface (elist;-1,-1,-1,-1,60) ‘initiate data entry after 1 sec (60 ticks, parameter #6) of holding
AL_SetEntryOpts (elist;7;0) “initiate data entry via control-double-click

Data Entry will be initiated whenever any modifier + click action is defined as the data entry initiator
(value 2..7). If the user moves the mouse during the click and hold action, AreaList Pro may interpret
that as a drag action when Arealist Pro dragging actions are active

Once typed data entry is initiated, standard editing functions can be performed on the selected cell,
including the Edit menu commands Cut, Copy, Paste, Clear, Select All, and Undo. This is true for cells
containing pictures, also (except Select All). Alphanumeric data being edited will always appear
left-justified, regardless of the column’s display justification. The [-Beam pointer can be dragged
across the data in the cell to select a portion or all of the data.

Data Selection and Edit Menu Commands

In addition, the AL_SetEditMenuCallback routine provides the developer with a complete hook to
working with the Edit menu.

Entering Data

If string data is entered, the system beep will sound for every character typed past the maximum string
length, and the typed character will be ignored (there are special programming considerations
concerning this feature). If a string which exceeds the maximum string length is pasted into a cell, it will
appear in the cell in its entirety, but will be truncated to the maximum string length when the insertion
point leaves that cell.

Boolean data is represented during data entry by either radio buttons or a checkbox. This data may be
entered via several methods, including using the space bar, using the key combinations t/f, T/F, y/n,
Y/N, or the first letters, upper and lower case, of values specified in the format for the boolean data
entry column.

When entering other types of data, as in 4" Dimension, data entry may be restricted to specific
requirements via the use of filters.

Enterability 28

The Arealist Pro User Interface

Data Entry Using Popups

ArealList Pro also has the ability to perform data entry using popup menus for column data types other
than picture or boolean. Popup menus will appear as small buttons on the right side of the cell which
will be labeled with a downward pointing triangle. The items contained in the popup menu represent
the possible values for that cell, which are determined by you.

However, for time or date information, a special popup menu will allow the user to choose appropriate
values for these data types. The presence of a popup menu in a cell does not necessarily prohibit the
ability to enter typed characters.

Time and date popups can be displayed either as the “old” mode or as the “new” mode, which uses more
modern fonts.

AL SetEnterable sets if the column is enterable by typing, popup or both. These settings can be restricted
(but not expanded) with AL SetCellEnter.

If the cell is enterable with popup, AL SetInterface sets what kind of popup will be used (old or new.)

The time menu is shown below. To select a time, the user should begin on the left side of the popup,
first selecting AM or PM, then the hour, then the minutes.

This menu will appear slightly different depending on your system settings for the time format (using a
24 hour clock, for example), but the method of selecting the time will remain basically the same.

A 12 u] AM 12]
P 1 =] PM 1 5
2 10 2 10
z 15 3 15
4 20 4 20
=] 25 g 25
= 30 ' 30
7 IS5 7 35
2 40 8 40
9 45 q 45
10 =11 10 50
11 1] 11 55
540 PH 325 PM
TIME POPUP MENU (“OLD” MODE) TIME POPUP MENU (“NEW” MODE)

The “old” date popup menu selects a date using a slightly different method: the user begins on the
right side of the popup, selects the year, then month, and last, the day. Click on the arrow to scroll
the years displayed on the popup. The “new” date popup is a regular calendar, with the upper left and right
arrows to navigate to the previous/next month and the middle diamond to set the value to the current date.

-4 + [2
wed, Jun 25, 2008 January - = =
s M T w T F & February 2004 [June 'i[EUUE 'i
March 20035
2 T 4 5 & 7 April 20065 S MT WTF S
91011121314May 2007 1 2 3 4 5 6 7
June 2008
8 9 10 11 12 13 14
15 16 17 18 19 20 21 uly 2003
e I August 2010 15 16 17 18 19 20 21
Septernber 2011
N bober 013 22 23 24 25 26 27 28
MNovernber 2013 29 30
Decernber w
DATE POPUP MENU (“OLD” MODE) DATE POPUP MENU (“NEW” MODE)

Enterability 29

The Arealist Pro User Interface

Data Entry Using Inline Controls

Since version 8.1, AreaList Pro allows time and/or date entry through a new interface, called Inline
Controls. This option is a replacement for direct text entry.

—

)

112:33 PM L] | B/25/ 2008

4 r
b mm—

(

TIME INLINE CONTROL DATE INLINE CONTROL

AL SetEnterable sets if the column is enterable by typing, popup or both. This settings can be restricted
(but not expanded) with AL SetCellEnter.

If the cell is enterable by typing, AL Setlnterface sets if AreaList Pro uses plain text editing (where user
can type in his date/time string) or inline date/time control.

Note that the cell widths and height may need to be increased to fit the inline control interface.

Moving the Current Entry Cell

ArealList Pro speeds data entry by making it easy to move to other enterable cells once data entry is
initiated. Since enterability is determined on a column by column basis, the cells adjacent to the current
data entry cell may not be enterable.

Arealist Pro handles this situation by using the Tab key to move to the next enterable cell to the right.
A shift-Tab combination will move data entry to the next enterable cell to the left. If there isn’t an
enterable cell on the same row, these key combinations will move the data entry cursor to the next or
previous row, respectively.

The Return key can be used in two ways during data entry. Normally, when the Return key or
shift-Return key is used, data entry will be moved to the next or previous row in the same column as the
current data entry cell. However, in some cases the Return key may be used to enter a carriage return
character into a text cell.

As a default, the Return key moves the data entry position. You may choose to configure the Enter key to
function the same as either the Return key or the Tab key, and also have the option of causing the Arrow
keys to move the insertion point from cell to cell.

Exiting Data Entry

The user may exit data entry mode by using the mouse to click on another layout object, an ArealList Pro
control or header, or a non-enterable column in the ArealList Pro area.

However, if the data that was entered was invalid, the cell cannot be exited until valid data is entered.
This is determined by the entry finished callback method.
See Using Callback Methods During Data Entry.

Enterability for Fields

Columns containing fields from a related one table will not be enterable either by typing or by using
popups.
Enterability 30

Creating an Arealist Pro Object on a Form

Resizable Windows with Arealist Pro

You can configure an Arealist Pro object to be resizable on a resizable window. When placed in the
lower right portion of a window, AreaList Pro will draw a size box in the lower right hand corner of the
window.

Click on this box and drag to resize the ArealList Pro object and its window.

Creating an Areal.ist Pro Object on a Form

Implementing AreaList Pro in your 4D databases is very easy; in fact, displaying data in a ArealList Pro
area can be accomplished with only one plug-in command. The ArealList Pro object is drawn on a 4D
layout using the plug-in area tool.

e -

PLUG-IN AREA TOOL

4D opens the Property List for the object, which is where the object is named and configured.
The name (variable) will be used as the areaRef parameter for the ArealList Pro commands.

Be careful to never have two ArealList Pro objects with the same name on a 4D layout.

To Configure a Variable Object as an Arealist Pro
Object

1 — Create a variable object on a layout and display the variable Property List.
2 — Select the ArealistPro object type.
3 — Name the variable. This name will be used as the first parameter to many of the ArealL.ist

Pro commands. Note: this variable must be a process variable, not an interprocess
variable (i.e. the name cannot begin with “<>" or “0”).

4 — The Arealist Pro object is drawn in the Layout Editor.

The first line of text contains the name of the object and its pixel dimensions, and the remaining lines
are the copyright notice. If the object is small, the horizontal and vertical scroll bars are not displayed
in the Layout Editor, but everything will function correctly. The display of the object name, pixel
dimensions, copyright notice, and scroll bars is an indication that the object has been properly
created and named.

Resizable Windows with Arealist Pro - To Configure a Variable Object as an Arealist Pro Object 31

Creating an Arealist Pro Object on a Form

Arealist Pro Object Dimensions

Arealist Pro provides information to allow you to properly size the AreaList Pro area and to align it with

other objects on the layout in the 4" Dimension Design environment. A scale at the top of the plug-in

area indicates the pixel width of the AreaList Pro object.

This may be used to align other layout objects which appear adjacent to the AreaList Pro object.
Displayed next to the object’s name is the width and the height of the object as it is drawn on the layout.
These values include the entire area displayed by ArealList Pro, including the header and scroll bars,

and they will be updated whenever the object is resized.

See Arealist Pro Height for additional information about controlling the height of an ArealList Pro object.

Creating an Drop Area on a Form

To create Arealist Pro’s Drop Area plug-in area, follow the same method as is used to create an ArealList

Pro area, only select AL_DropArea from 4D’s object Property List popup. No text other than the area

name will appear inside the AL_DropArea object.

Using the Arealist Pro Commands

The ArealList Pro Commands are used in the same way that a 4D command is used. Parameters are
separated by the semicolon character (“;”). You can access the AreaList Pro commands in the method
editor list. Near the bottom of the list, below the area which contains the project methods, there are

several AreaList Pro command topics as shown below.

E ; ™

(ZEala) Object Method: ePL_PrintArea
1 "OM: eFL_PrintArea

2 “LM: Bf12/04, 7.9

B

4 ¥ Case of

5 ¥ :(Form event=0n Load }

6

7 C_TEXT(4format; $fontMame)

B C_LONGINT($mode; $ret; smalnTableno; $size)

9 C_LONGINT($collust; $headlust; $footiust; susePlctHelght)

Alltablesand f|E|d5 s e mes ey S Methodﬂg

C_LONGINT($fontSize; $fontStyle)

$malnTableMo:=0
dslze: =0
smode: =0

gformat:=""
$coliust: =0
$headlust: =0
$footiust: =0
juseF|ctHelght: =0

gfontName:=""
gfontsize:=0
$fontStyle: =0

ARRAY TEXT(atAL_FrintHeaders; D)
$mode: =AL_GetMode [IAL_PrintAreaRef)

> Ar

Big File

Companies

Filel
Init File

Big File | 2] AaACompiler
Companies B aasCompiler2
Filel | &1 aaaboit

Init File 2] aacs

Y¥YYY
G EED

Arealist Pro Object Dimensions - Creating an Drop Area on a Form

A - HBE Al Pro s
v BEE ALProC
@ b B AL Pro C

b B AL Pro O

- Using the Arealist Pro Commands

32

Creating an Arealist Pro Object on a Form

Clicking on a topic presents a popup menu of the AreaList Pro commands available. Simply select a
command, and 4D will enter it for you at the current cursor position.

You can also type the command directly into the method, or use the Explorer's Component page.

Command Descriptions and Syntax

Each ArealList Pro command has a syntax, or rules, that describe how to use the command in your 4D
database. For each command, the name of the command is followed by the command’s parameters.
The parameters are enclosed in parenthesis, and separated by semicolons. Following the command
syntax description, an explanation of the command’s parameters is provided. For each parameter,

the type of the parameter and a description is shown. Several examples are provided, showing the
syntax as well as how the various commands are used together.

The first parameter for each command is the reference (name) of the Arealist Pro object on the layout.
This parameter is a long integer, and is required to allow the commands to operate on the correct object.

Causing an Areal.ist Pro Callback Method to Execute

Eight callback method types are available so that the developer can react accordingly to user actions.
See Using the Callback Methods.

With ArealList Pro versions prior to 7.9, the events could only be managed through the object method or
form method called when the user takes an action on the area, such as clicking to select a row. A new
Event Callback Interface is available since version 7.9 to respond accordingly to user events.

See Event Callback Interface and Event Callback vs Object Method.

Developer Alert

If the first parameter passed to any AreaList Pro command is not the object reference, an alert box will
appear, informing you of the syntax error.

@ AL_SetArraysNam was passed an incorrect first
» 8% parameter.

INCORRECT PARAMETER ALERT

If this object reference is a PrintList Pro area or another plug-in area, AreaList Pro will also pass this
information to you.

Command Descriptions and Syntax - Causing an Arealist Pro Callback Method to Execute - Developer Alert 33

Configuring Arealist Pro Using the Advanced Properties Dialog

Configuring Arealist Pro Using
the Advanced Properties Dialog

Arealist Pro includes a point-and-click interface for configuring a ArealList Pro object from within
the Design environment. This dialog provides access to configure nearly every feature available via
Arealist Pro commands, and is very easy to use.

The Advanced Properties dialog lets you specify the names of the arrays to be displayed, and nearly all
options. There is a preview tab to instantly view the options that you've selected.

Once you click the OK button to complete the configuration, the settings will be saved by 4D within the
plug-in area object on your layout. Whenever this layout is opened in the User/Runtime environments,
the settings made here will be applied to your ArealList Pro object before the form method or any object
methods are executed. Essentially, you are replacing the default settings provided by ArealList Pro with
new values of your choosing.

You can use commands in combination with the Advanced Properties Dialog. In this case, AreaList Pro
first reads the settings specified in the dialog, then uses the settings specified by commands.

To Display the Advanced Properties Dialog

1 — Double-click a AreaList Pro object in the Layout Editor. 4D will display the Object
Properties palette.

a Property List

Variablel =)
¥ (7} Objects

Type ArealistPro
Object Name Variahle1

!

Variable Name eDemoALP }
Object Method *
Help Message <Nonex }
Draggable }
Droppable {
|

¥ ¢ Coordinates & Sizing
Left 6
Top 197
Right 635
Bottom 381
Width 629
Height 184
Horizontal Sizing Grow
Vertical Sizing Grow
¥ ¥ Events
On Load

Show Themes

OBJECT PROPERTIES PALETTE

2 — Click the Advanced Properties button. The Advanced Properties Dialog will be dis-
played.

The dialog has several panes, accessed via the tabs at the top, which provide access to the various
configuration options.

To Display the Advanced Properties Dialog 34

Configuring Arealist Pro Using the Advanced Properties Dialog

Arealist Pro Advanced Properties

B Area Name: |eListDest
Arealist™ Pro vB.5b11
©1980-2011 Beckware LLC. All Rights Reserved Area Defined Name: I:l
Column Setup | General Options | E jlity | Advanced | Dragging | Preview |
Display:|_Arrays =
Enterabilit;
Columns: E‘E‘ Y
o Default Use the Default column to set the properties Entry allowed via:| Keyboard anly)

for all columns. Then, if you wish to have
different settings for a particular column, Entry Filter:
select that column in the list, and set it.
Popup array:
You will need to specify the field or array, [Check column with Spell Checker
header, and format for each column.
Boolean data, display: | Checkbox without title 3]

Column Width: Autosize
[Use PICT size for row height Area Callback Method:

Edit menu Callback Method:

List 1 Header | Footer |

Font: | Geneva ﬁ Size: 9 Justification: | Default ?

Style Color
[Plain [italic [Qutline [Condensed Text: | Black D]
[Bold [|Underine [Shadow [|Extended Background: | White =]
Cancel oK

ADVANCED PROPERTIES DIALOG

Once you click “OK” to complete the settings, these properties will be saved by 4D with the

plug-in area object on your layout. Whenever this layout is opened in the User/Runtime environments,
the settings made here will be applied to your Arealist Pro object before the layout method begins

to run. Essentially, you are replacing the default settings provided by AreaList Pro with new values

of your choosing.

You can specify the the arrays or fields to be displayed, and almost every other option in Arealist Pro.
The only main categories that are not supported in this dialog are row and cell settings.

Setting the Data to Display

Data is passed to Arealist Pro via 4D arrays or fields. You can tell ArealList Pro the names of the arrays or
fields using the first pane on the Advanced Properties Dialog.

Displaying Arrays

You can configure Arealist Pro to display arrays using the Advanced Properties Dialog.
You must declare all arrays in 4D before opening the form.
For example:

ARRAY STRING (20;aFirstName;0)

The array must be declared before the form is opened, such as with the 4D Open window function.

To Display the Advanced Properties Dialog - Setting the Data to Display - Displaying Arrays 35

Configuring Arealist Pro Using the Advanced Properties Dialog

You should usually populate the arrays in the On Load phase of the form. Then call AL_UpdateArrays.

Example:

Case of
:(Form event=On Lload)
SELECTION TO ARRAY ([Table 1]First Name;aFirstName)
AL_UpdateArrays (elist;-2)
End case

Columns: IE”E‘

1] Default Array Name: [FirstName
1 First Name
2 Last Mame
3 City
4 SFate Header Text: -F rst Mame
5 Zip Code :
[Country Format:
T Title
Footer Text:
8 Birthdate
Column Width: [.ﬁ.utu}size-

: Use PICT size for row height

ARRAY SETTINGS

Displaying Records
You can use the Advanced Properties Dialog to display records from the database. The current selection
for the Main table will be displayed at runtime.

You are responsible for establishing the selection using standard 4D commands such as SEARCH, ALL
RECORDS, etc.

The project method Compiler_ALP must be present in the database.

Please read the section Temporary Arrays for more information.

Columns: IE”E‘

o Default Use the Default column to set the properties for all
1 First Name colurmns. Then, if you wish to have different

2 Last Mame settings for a particular column, select that column
= City in the list, and set it.

4 State

5 Zip Code You will need to specify the fiald or array, header,
6 Country and format for each column.

7 Title

:] Birthdate

Colurmn Width: hutosize

: Use PICT size for row height

RECORDS SETTINGS

Displaying Arrays - Displaying Records 36

Configuring Arealist Pro Using the Advanced Properties Dialog

Column Enterability

You can specify the enterability of each column. If you specify a popup array for a column, the array

must be declared and loaded before the window is opened in the Runtime environment.

For example the following code must be executed before the Open Window function is called:

ARRAY STRING (20;aPopupFirstName;0)

SELECTION TO ARRAY ([People]First Name;aPopupFirstName)

See Enterability below and the Enterability section for more information about enterability configuration

and options.

Default Column

Columns: |£||E|

o DFfﬁU” Use the Default column to set the properties for all
1 First Mame calurnns. Then, it you wish to have different

2 Last Mame settings for a particular column, select that column
3 City in the ist, and set it.

4 State

5 Zip Code You will need to specify the field or array, header,
& Country and format for each column.

T Title

8 Birthdate

Column Width: Autogize

Use PICT size for row height

DEFAULT COLUMN

You can use the default column to setup the attributes for new columns you include by clicking the

Add button. New columns that are added are assigned the settings in the default column.

This behavior is true at any time, not just the first time that the Advanced Properties dialog is configured.

If you change the settings for the default column, any new columns you add will get the settings, but

existing columns will not be changed.

Column Enterability - Default Column

37

Configuring Arealist Pro Using the Advanced Properties Dialog

General Options

Arealist Pro Advanced Properties

Arealist Pro™ Area
Arealist™ Pro vB.5011
©1990-2011 Beckware LLC. Al Rights Reserved

Column Setup ‘ General Options T Enterability T Advanced T Dragging T Preview

)

Selection
Selection mode:| Single-row B

("] Allow no selection (single-row mode)

("] Disable row highlight

See also "Entry and Sefection Mode" on
the "Enterability Options" panel...

Columns

M Allow column resize

[_] Display pixel width

[_] Resize when data changes

M Allow column lock
Lock| 0 columns

Hide last 0 columns

Miscellaneous

¥ Use modern look

Show focus: | 3D Frame v

[Hide headers | Show footers
E] Move row style & color settings with data

¥ Move cell style & color settings with data

Command-key for running chject method:|\ |

Sorting

| Sort on data change

Clicks on header,_Sort on Click :

@ Show sort direction indicator
Show current sort order in sort editor
Enable user sort editor

Sort editor prompt: Select the columns to sort:

Cancel 0K

GENERAL OPTIONS

Enterability

Arealist Pro Advanced Properties

Arealist Pro™ Area
Arealist™ Pro vB.5b11
©1990-2011 Beckware LLC. All Rights Reserved

DL] I——

Column Setup T General Options T Enterability T Advanced T Dragging T Preview |

Entry and Selection Mode

Entry Selection

) None Single-click

@ None Single and Double-click
O Single-click None

O Double-click Single-click

) Command Double-click _Single and Double-click
) Shift Double-click Single and Double-click
) Option Double-click Single and Double-click

O Control Double-click Single and Double-click

Callbacks to 4D Methods
4D Method for On Cell Entry:
4D Method for On Cell Exit:

Entry Popups
E Use modern popup icon

ENTERABILITY

Keyboard Entry
[Allow user to enter Return character

| Display seconds during entry of times

Arrow keys: | Move cursor :

Enter key: | lanore %

Decimal character on Windows: .

Cancel 0K

General Options - Enterability

38

Configuring Arealist Pro Using the Advanced Properties Dialog

Advanced Options

Arealist Pro Advanced Properties

Arealist Pro™ Area
Arealist™ Pro vB.5b11
©1990-2011 Beckware LLC. All Rights Reserved

[Column Setup f General Options T Enterability 'f Advanced] Dragging T Preview |

Area Name: |eListDest

Scroll Bars Miscellaneous Colors
("] Hide vertical scrollbar =]
("] Hide herizontal serollbar

Note: the horizontal scrollbar

will automatically be hidden -
if the data displayed fits o~ 3
within the Arealist Pro _ | q [y
object. = IB

Lines and Spacing
Header padding: 2
Row padding: 0

Number of Header lines:
Number of Row lines:

1
1
1

Number of Footer lines: Footer padding: 2

Callbacks to 4D Methods

4D Method for On Area Entry:
4D Methed for On Area Exit:

ADVANCED OPTIONS

Dragging

You can configure the dragging for an Arealist Pro object using this pane. Please read the section

Dividing Lines

Column line pattern: | No line k2

Column line color: :

Row line pattern: | No line :

Row line color: s

Clipboard
[Include hidden columns
Field delimiter: | ASCIl 009/
Record delimiter: ASCII 013/
Field wrapper: 'ASCINULL

Cell Custom Formatting Optimization

Favor & Favor

RAM Performance

Cancel oK

Dragging Commands for more information.

Arealist Pro Advanced Properties

Arealist Pro™ Area
Arealist™ Pro vB.5011
©1990-2011 Beckware LLC. All Rights Reserved

[Column Setup [General Options T Enterability T Advanced f Dragging l Preview |

Options
[Row drag only with Option key

Source Codes

Please refer to the AreaList Pro manual for information on configuring the dragging features.

Scroll area size:| 30

Row dragging: | Drag between rows [i... &

Rows Columns

Cells

Code 1:

Code 2:

Code 3:

Destination Codes

Rows Columns

Cells

Code 1:

Code 2:

Code 3:

DRAGGING

Cancel 0K

Advanced Options - Dragging

39

Configuring Arealist Pro Using the Advanced Properties Dialog

Preview

The Preview tab allows you to preview most of the options available in the dialog.

Sample alphanumeric data is used to “fill-in” each of the columns you've created in the Column Setup
tab.

You can quickly see the results of any configuration changes you make using this feature.

The Copy Commands for Current Configuration to Clipboard button creates 4D code and Arealist Pro

commands equivalent to the current settings in the dialog, and copies it to the clipboard. This code can
then be pasted into a 4D method.

Arealist Pro Advanced Properties

Arealist Pro™ Area

Area Name: jeList
Arealist™ Pro vB.5b11
©1990-2011 Beckware LLC. All Rights Reserved Area Defined Name: I:|

[Column Setup [General Options T Enterability T Advanced [Dragging] Preview 1

This AreaList Pro object uses the configuration options you've selected in this dialog. The data displayed is obviously not
realistic, so for final appearances, test this form in the Custom menus environment.

City |state | [
Row 1 Row 1 a
Row 2 Row 2 gl
Row T Row 5

Row 4 Row 4

Row 5 Row 5

Row 6 Row 6

Row 7 Row 7

Row & Row 3

Row 3 Row 3

Row 10 Row 10

Row 11 Row 11

Row 12 Row 12

Row 13 Row 13

Row 14 Row 14

Row 15 Row 15

Row 18 Row 16

Row 17 Row 17

Row 19 Row 19

Row 19 Row 19

Row 20 Row 20

Row 21 Row 21

Row 22 Row 22 ul
Row 23 Row 22

Row 24 Row 24

Row 25 Row 25

Row 26 Row 26 b

Copy Current Configuration to Clipboard

Cancel oK

PREVIEW

Preview 40

Configuring Arealist Pro Using Commands

Configuring Arealist Pro Using Commands

An Arealist Pro object is initialized in the On load phase as the layout is about to be displayed.

This initialization will be contained in the ArealList Pro plug-in area object method or in the form
method.

Using Defined Constants with Areal.ist Pro

There are defined constants that may be used as values for most of the parameters in the AreaList Pro
commands. See the Constants tab of the Explorer in the 4D Design environment. These constants
are categorized according to the type of command that they are associated with, such as ALP Array
commands, ALP Field commands, etc.

Other constants are used for the Arealist callback interface. See Using the Callback Methods.

Specifying the Arrays to Display

4D arrays are passed to Arealist Pro for display via the AL_SetArraysNam and AL _InsArrayNam
commands.

These should be performed in the On load phase of layout execution, or other form events depending
upon the desired appearance of the AreaList Pro area upon initial display of the layout.

If no ArealList Pro setup is performed in the On load phase, nothing will be displayed in the space
occupied by the plug-in area until setup occurs in another phase.

Whether the ArealList Pro columns are set in the On load phase or in another phase, the setup of an
Arealist Pro area must follow one main rule: AL_SetArraysNam or AL_InsArrayNam must be called
before any other AreaList Pro commands are executed.

This is necessary to provide ArealList Pro with an opportunity to allocate the data structures necessary to
store formatting information for each column. These data structures are allocated on a per column basis,
and AL_SetArraysNam for a given column (or AL_InsArrayNam) must be executed before the appearance,
enterability, style, or any other property of that column can be specified.

Using Defined Constants with Arealist Pro - Specifying the Arrays to Display 4]

Configuring Arealist Pro Using Commands

If the AL_SetArraysNam or AL_InsArrayNam command is incorrectly used, an error code indicating the
problem will be returned:

Constant Value | Action
AL No error in arrays 0
AL Not an array error 1 Check to make sure all arrays are correctly typed

AL Wrong type array error Pointer and two-dimensional arrays are not allowed

AL Wrong number rows error Make sure that all arrays have the same number of elements

AL Max arrays exceeded error 512 arrays is the maximum

G| | W | DN

AL Low memory array error Increase 4D’s RAM partition, or change your approach to use

fewer or smaller arrays

ARRAY SETUP ERROR CODES

Up to 512 arrays can be displayed by Arealist Pro, with up to fifteen columns specified in each call to
AL_SetArraysNam or AL_InsArrayNam.

The position of the first array, columnNumber, and the number of arrays, numArrays, are also specified
in these commands. All array types except for pointer and two dimensional arrays, are allowed, and all
arrays must have the same number of elements.

The maximum number of rows is 2,000,000,000.

In addition to standard single-dimension arrays, one dimension of a two-dimensional array may be
passed to AL_SetArraysNam or AL_InsArrayNam. For example: “My2DArray{1}” may be passed as
array]l.

While similar in purpose, the commands AL_SetArraysNam and AL_InsArrayNam affect previously
specified arrays in different ways. In the second or any subsequent executions of AL_SetArraysNam,
if columnNumber is the number of a currently existing column, then it and any subsequent columns
will be replaced by the arrays specified in the command.

However, AL_InsArrayNam will actually insert the new arrays specified, and simply move existing
arrays over to accommodate them. In both commands, the column number specified must either already
exist or be the next higher column number available; no column numbers can be skipped.

For more information about adding, replacing and deleting arrays, read Inserting and Deleting Arrays,
below.

Specifying the Arrays to Display 42

Configuring Arealist Pro Using Commands

Inserting and Deleting Arrays

After the initial setup and display of the ArealList Pro area, you may want to insert, remove, or replace
arrays in the currently displayed ArealList Pro object.

To accomplish this, AreaList Pro provides the commands AL_InsArrayNam, AL_RemoveArrays,
AL_SetArraysNam and AL_UpdateArrays.

These commands allow you to implement a dynamic display of data. You should keep in mind that

the column number used to refer to a given column, particularly when using any of the multitude of
configuration commands, may change as columns are inserted or deleted. In later attempts to configure
this column, the new number must be used.

No columns (arrays) should be added or deleted in a callback method. See Using the Callback Methods.

If new arrays of different sizes are to be displayed, then the old arrays must first be removed using
AL_RemoveArrays, then the new arrays added with AL_InsArrayNam or AL_SetArraysNam.

The AL_GetArrayNames routine will return an array of array names. You can only use this routine
when configuring arrays via AL_SetArraysNam.

Modifying Array Elements Procedurally

When the arrays are initially specified via the AL_SetArraysNam or AL_InsArrayNam command, the
number of array elements is established for the area.

To change the number of elements displayed in the existing arrays, new elements should be added or
deleted, and the command AL_UpdateArrays called with updateMethod set to -2.

If the value or any attribute of an array element is changed or if the number of elements is changed,
but the specified arrays are the same, you should instruct AreaList Pro to refresh the area with
AL_UpdateArrays.

Specifying the Fields to Display

ArealList Pro uses the SELECTION RANGE TO ARRAY command in 4D to get the records for display.

See Field and Record Commands for the details on fields display.

Inserting and Deleting Arrays - Modifying Array Elements Procedurally - Specifying the Fields to Display 43

Configuring Arealist Pro Using Commands

Headers

Column headers are set with AL_SetHeaders. This routine also provides the ability to display icons in
Arealist Pro headers and cell data, using picture data contained in the cicn resources, or items stored
in the 4" Dimension Picture Library.

If more than one line of text is needed in a column header, or when displaying icons,
the numHeaderLines parameter of AL SetHeight should be used. Additional space can be added
to the height of a header by specifying the headerHeightPad parameter of this command.

Additional header attributes are specified by using AL SetHdrStyle, AL SetFormat, AL SetForeColor, AL
SetForeRGBColor, AL SetBackColor and AL SetBackRGBColor for style, justification, foreground color,
and background color, respectively.

Display of column headers can be suppressed using the hideHeaders parameter of AL_SetMiscOpts.

AL SetHeaderlcon provides the ability to procedurally place icons with headers.

AL SetHeaderOptions provides the ability to customize the interface over the scrollbars (sort area).
You can customize the icon which is displayed using “cicn” or “PICT” resource, or an item from the
4D Picture Library. See Header/Cell Icon Support for more information.

AL GetHeaders will return an array of all headers for the defined ArealList Pro area.

Arealist Pro includes modern column headers, including direct platform detection. The column headers
include the standard sort icon (which can be enabled/disabled procedurally) indication arrow to notify
users which order the column is sorted.

Footers

Column footers are set with AL_SetFooters.

If more than one line of text is needed in a column footer, the numFooterLines parameter of
AL SetHeight should be used. Additional space can be added to the height of a footer by specifying
the footerHeightPad parameter of this command.

Additional footer attributes are specified by using AL SetFtrStyle, AL SetFormat, AL SetForeColor,
AL SetForeRGBColor, AL SetBackColor and AL SetBackRGBColor for style, justification, foreground
color, and background color, respectively.

Display of column footers can be controlled using the showFooters parameter of the AL_SetMiscOpts
command. Column footers are hidden by default, so you must use this command if you wish to display
footers.

AL GetFooters will return the footer information if you have enabled footers.

Headers - Footers 44

Configuring Arealist Pro Using Commands

Column Widths

Column widths are by default sized automatically, an option which can be overridden with
AL SetWidths. Normally, there is no need to use this command, but for details about exceptions to this
rule please read Performance Issues with Formatting Commands.

Column widths can be set manually by using AL SetWidths; however, you may want to view

the widths generated by Areal.ist Pro’s automatic column sizing as a good starting reference.

The displayPixelWidth parameter of AL_SetColOpts should be set to 1 to enable this feature, which
allows you to toggle between the header text and the column width by clicking on the check box that
appears in the bottom right corner of the ArealList Pro object. Additionally, the columns can be resized
in the Runtime environment, and the column width values are updated immediately.

When using this feature, you should be sure to enable the display of headers by passing 0 in the
hideHeaders parameter of AL_SetMiscOpts.

AL GetWidths will return displayed column widths.
AL _GetColOpts will return the current settings configured using AL_SetColOpts.

Arealist Pro Height

Complete Rows Display

Whenever an array or field command is called, AreaList Pro performs calculations necessary to size the
plug-in area based on the size of the object as drawn on the layout. AreaList Pro will always ensure that
only complete rows are displayed in the Arealist Pro area.

However, this means that the actual height of the plug-in area as displayed in the User or Runtime
environment may be slightly less than the height in the Layout Editor. This can be a hindrance when you
are attempting to align other layout objects with the AreaList Pro object.

To ensure that the Arealist Pro object does not change its size when displayed in the Runtime
environment, a tool is available to tell you what size to make the area. To use this tool, first set the
displayPixelWidth parameter of AL_SetColOpts to 1, then click the checkbox as shown.

114 [10z2 a0 |63 | 47 50 37 a3 74 |
Mike Erickson 1 000,00 310 PM Female :Tapei Ta 94065 ROC
e A SR 68 4RA T U Fomais TTar e Seqid Pl O
Samir o Arors 0 B3847.881 T02AM Male iJersuisem o 895014 T isrsel
Mike] Bailey ... 85410,74: 7:59PM Male iBrooklyn ¢ NY 94088 USa
Sharen .. domes i 20019,86: G:12AM Female :Baghdad : 45220 % lraq ..
Rick] Barron i 59908,38: G:10AM Male :Tulsa ¢ oK ..8oshz USa
dimo] Bartimo ... 21418,88; 12:59PM Male :Dallss & 25130 lraq .. :

PANY i Bttt 26 898,06 B:52AM Male tondon .G M2 Wsa

COLUMN WIDTHS/HEADERS TOGGLE

The mouse pointer will change from an arrow to a pixel count whenever it is over the list and this option is set.

Column Widths - Arealist Pro Height 45

Configuring Arealist Pro Using Commands

When clicked on a row, this counter will display the necessary height of the AreaList Pro object for that
row to be the bottom row displayed.

For example, if ten rows are displayed in the area, and you click the seventh row, the number displayed
by the pointer will be the height of the object necessary to display exactly seven rows. You can then size
the ArealList Pro object in the Design environment using the displayed height.

Please read the section Arealist Pro Object Dimensions for more information.

The header size, footer size and the horizontal scroll bar will be taken into account if they are displayed.

This feature is unavailable if enterability can be initiated with a single click.

Partial Rows Display

Alternately, there is an option whereby you can configure Arealist Pro areas to draw in the exact same
height as defined in the form. With the settings above, ArealList Pro will resize the height of the area to
match the font attributes and assure that only a complete row was visible.

This has an adverse effect that the area may be resized to be shorter than that which was drawn in the
form, causing some user interface inconsistencies.

First Name [Last Name
Bailey ¢ Erickson
Joelle ¢ Erickson
Kira ¢ Erickson
Brady ¢ Erickson
Trevor ¢ Erickson

AREALIST PRO AREA AUTO SIZED (SEE GAP AT BOTTOM)

Arealist Pro Height 46

Configuring Arealist Pro Using Commands

This interface can be controlled using the allowPartialRow parameter in AL Setlnterface:

First Name l Last Name
Bailey ¢ Erickson
Joelle ¢ Erickson
Kira ¢+ Erickson
Brady ¢ Erickson
Trevor ¢ Erickson

AREALIST PRO DRAWN IN ACTUAL SIZE OF FORM OBJECT

Column Locking

You can set the lock position using AL _SetColLock. AL _GetColLock returns the current position of the
column lock. You can also disable the column lock control by using the allowColumnLock parameter
of AL SetColOpts.

AL GetColOpts will return the current settings configured using AL_SetColOpts.

Row Height

Row height is determined by a combination of the height of the text line or picture, the number of lines
(multiple lines of text), and any additional padded space. The height of each line of text is determined
by the font and point size selected, which are set with AL SetStyle.

The number of text lines and the amount of padding are set with the numRowLines and rowHeightPad
parameters of AL _SetHeight. Padded space is the amount of space above and below the text block,
(half of the amount above, half below). All rows will be of the same height.

AL SetMinRowHeight provides the ability to set the minimum row height for AreaList Pro rows.
This is different than row padding as it will allow you to set individual rows to appear with extra white
space, regardless of the amount of data.

Arealist Pro Height - Column Locking - Row Height 47

Configuring Arealist Pro Using Commands

Color

Column, Header, and Footer Colors

Foreground and background colors can be specified for an ArealList Pro object using AL_SetForeColor,
AL SetForeRGBColor, AL SetBackColor and AL_SetBackRGBColor. The foreground and background
colors can be specified for each column, column header, and column footer.

Row-Specific Colors

AL SetRowColor and AL _SetRowRGBColor are used to set the foreground and background colors of a
specified row, and will override any column specification. You can revert to the original column settings
with AL_SetRowColor by setting the alpRowForeColor or alpRowBackColor parameter to the empty
string (""), and the 4dRowForeColor or 4dRowBackColor parameter to -1. Use this command to

override all row-specific color settings by passing 0 for the rowNumber parameter.

By default, the row color will move with a row if the columns are sorted or a row is dragged.
This can be overridden using the moveWithData parameter of AL_SetRowOpts.

Alternate Row Colors

Arealist Pro provides the ability to display default row color without any additional programming such
as callback routines.

Using AL SetAltRowColor or AL SetAltRowClr, you can configure ArealList Pro to automatically display
custom row colors, including shading rows which do not contain any information.

'FirstName |LastNarne Salary |E Arrival l Sex iCity

MacOS X DerauLt Row COLORING

First Name | Last N... | Salary & & Arrival Sex

‘|

WINXP DerauLt Row COLORING

Color 48

Configuring Arealist Pro Using Commands

AL SetAltRowColor provides the ability to set the alternate row colors for an Arealist Pro area.
The colors are defined using a standard RGB pattern and can optionally be configured to display the
alternate row color in blank rows to fill the entire area with a consistent interface.

You may optionally display the alternate row color for odd and/or even rows, including empty rows
(those below the last row).

AL SetAltRowClr performs the same action as AL_SetAltRowColor, except that it uses the standard
Arealist Pro color formatting parameters as routines such as AL_SetMiscColor.

In addition, AL_SetRowColor provides a simple method of setting the alternate row colors for an AreaList
Pro area. The row colors used will be determined based on the current platform (OS9, OSX, WinXP or
Vista).

Cell-Specific Colors

Individual column elements, called cells, can be assigned a unique foreground color and background
color.

This capability can be used to set negative numbers in red, provide special formatting to show the
current selected or enterable cell, and design more attractive and useful lists.

These attributes can be set in the On load phase, and either of the ArealList Pro callback methods (see
Using the Callback Methods).

You can use AL SetCellColor or AL SetCelIRGBColor to set the color configuration for an individual
cell, a range of cells, or a selection of discontiguous cells.

AL GetCellColor and AL_GetCelIRGBColor are used to determine any cell-specific colors for a particular
cell. AL_GetCellColor can only determine a color which has been set using the 4D palette of 256 colors,
not the Arealist Pro palette.

Use the moveWithData option of AL SetCellOpts to keep the cell-specific information with a cell when
a row or column is dragged to a new location or the list is sorted.

Miscellaneous Colors

You can use AL SetMiscColor or AL_SetMiscRGBColor to set the color of four different areas of an
Arealist Pro object.

These areas are the upper right, lower right, to the right of the footer (if displayed), and the lower left if
the column lock has locked one or more columns.

Color 49

Configuring Arealist Pro Using Commands

Styles

Column, Header, and Footer Styles

Styles for displayed columns can be set on a column by column basis using AL SetStyle to set
the style for the data, AL_SetHdrStyle to set the header style, and AL_SetFtrStyle to set the footer style.
If a 0 is used in the columnNumber parameter, the style will be applied to all columns.

AL GetStyle returns the formatting options set using the AL_SetStyle routine.

AL GetHdrStyle returns the formatting options set using the AL_SetHdrStyle routine.

AL GetFtrStyle returns the formatting options set using the AL_SetFtrStyle routine.

In addition, AL SetDefaultStyle can be used to set the default values for the list data, the headers and the
footers of all ArealList Pro areas.

Row-Specific Styles

AL SetRowsStyle is used to set the font and style of a specified row, and will override any column
specification. You can revert to the original column settings by setting the styleNum parameter to -1.

Use this command to override all row-specific style settings by passing 0 for the rowNumber parameter.

By default, the row style will move with a row if the columns are sorted or a row is dragged.

This can be overridden using the moveWithData parameter of AL_SetRowOpts.

AL GetRowOpts will return the current settings configured using AL_SetRowOpts.

Cell-Specific Styles
Individual column elements, called cells, can be assigned a unique font and style.

This capability can be used to provide special formatting to show the current selected or enterable cell,
and design more attractive and useful lists.

These attributes can be set in the On load phase, and either of the ArealList Pro callback methods (see
Using the Callback Methods).

You can use AL_SetCellStyle to set the font and style configuration for an individual cell, a range of cells,
or a selection of discontiguous cells. AL_GetCellStyle is used to determine any cell-specific formats for
a particular cell.

Use the moveWithData option of AL SetCellOpts to keep the cell-specific information with a cell when
a row or column is dragged to a new location or the list is sorted.

AL GetCellOpts will return the current settings configured using AL_SetCellOpts.

Styles 50

Configuring Arealist Pro Using Commands

Dividing Lines

You can display dividing lines between rows and column, and specify their pattern and color using
AL SetDividers and AL_SetRGBDividers commands.

Sorting

Sort Buttons

User sorting of the columns via the column header sort buttons is enabled via the userSort parameter of
AL SetSortOpts.

Sort Direction Indicator

You can use the showSortDirIndicator parameter of AL_SetSortOpts to display a sort direction indicator
in the upper right corner above the vertical scroll bar. This option requires the header and the vertical
scroll bar to be displayed.

When the user clicks the sort direction indicator, the sort direction of the primary sort level will

be reversed and the list will be sorted. The ArealList Pro event callback (or area/form method) will run,
with a $2 event code of -1 returned to the callback method (or AL _GetlLastEvent command (formerly
AlProEvt variable), the same as if a sort button in the header was clicked (see Using the Callback
Methods).

Sort Editor

The user can be presented with the ArealList Pro Sort Editor by calling AL_ShowSortEd.

The window title and the prompt at the top of the window can be customized using the prompt
option of AL SetSortEditorParams. AL_SetSortEditorParams also provides the ability to customize the
appearance of available sort items when displaying the AreaList Pro Sort Editor.

The current sort order of the AreaList Pro area can be displayed when the Sort Editor dialog is presented
by setting the showSortOrder parameter of AL_SetSortOpts.

I the allowSortEditor option of AL_SetSortOpts is enabled, the user can invoke the Sort Editor by
ctrl/command-clicking a column header.

AL GetSortEditorParams provides the ability to retrieve the current properties of the ArealList Pro Sort
Editor. If you have not previously customized the display properties, the default settings will be returned.

AL SetSortedCols provides the ability to customize the default list of sorted columns.

AL GetSortedCols returns the current sort columns as displayed in the Sort Editor. You should use this
routine after displaying the ArealList Pro Sort Editor.

The Arealist Pro default Sort Editor is displayed as a resizable window.

Dividing Lines - Sorting 51

Configuring Arealist Pro Using Commands

Procedural Sorting

Multilevel sorting can be performed procedurally on the AreaList Pro columns by using AL SetSort.
This command will sort all of the columns in an ArealList Pro area, using up to 15 of them as sort criteria
for the multi-level sort.

If a column that contains a picture column is passed as one of the sort criteria, that column and all
subsequent columns will be ignored. AL_GetSort can be used to retrieve the current sort order of the
area, regardless of whether this sort order was established by the user or procedurally.

Sorting When Displaying Fields

Columns containing fields from a related one table will not be sorted when their column header
is clicked upon.

However, if the userSort option of AL SetSortOpts is set to 2, “Bypass the user sort buttons”, and the
column header of a column containing a field from a related one table is clicked upon, the ArealList
Pro event callback (or area/form method) will run, with a $2 event code of -1 returned to the callback
method (or AL_GetLastEvent command, formerly ALProEvt variable). See Using the Callback Methods.

Before ArealList Pro sorts fields (using 4" Dimension’s sorting routines) it turns messages off. If messages
were on previously, then AreaList Pro will turn them back on after sorting.

Scrolling

The current scroll position can be set and retrieved using AL SetScroll and AL_GetScroll, respectively.
You can hide either the horizontal or vertical scroll bar, or both, using AL_SetScroll.

This allows you to construct a grid of cells, providing a different interface from a standard scrolling list.
When a scroll bar is hidden, the user is still able to scroll using the Arrow keys or by dragging.

You can also set and get the scroll position procedurally.

Selection

Use AL SetEntryOpts to set the method of selection and data entry. You have extensive control over
how the user interacts with a list: a mouse click can select a row, or place the cursor into the cell
for data entry.

You can also configure the modifier keys (ctrl/command, shift, option/alt, and control) to control the
selection behavior. Please read the section Enterability.

You can configure an AreaList Pro object for no cell selection, single cell selection only, or multiple
cell selection, using the cellSelection parameter of AL_SetCellOpts.

If you select not to allow cell selection, then the multiRows parameter of AL_SetRowOpts is used to
determine the type of row selection — single-row only or multiple rows.

Sorting - Scrolling - Selection 52

Configuring Arealist Pro Using Commands

In single-row mode, the default configuration requires that one row always be selected.

This can be overridden using the allowNoSelection option in AL_SetRowOpts, which enables the user
to ctrl/command-click to deselect the selected row, leaving no rows selected. AL_SetRowOpts is also
used to configure ArealList Pro for single or multiple rows selection mode.

You can set the selected rows using AL SetLine if in single-row mode, or AL SetSelect if in multiple rows
selection mode.

AL GetClickedRow returns the last row that was clicked, and AL_GetLine returns the currently selected
row, as a result of a click or any other action.

You can set the selected cells using AL _SetCellSel.

When an Arealist Pro object is in cell selection mode, mouse clicks are used to highlight cells rather
than rows.

If multiple cells selection is enabled using AL_SetCellOpts, then the user can shift-click
and ctrl/command-click to select multiple cells. Discontiguous (non-adjoining) selections are allowed.

When an Arealist Pro object is in cell selection mode, it is always possible that no cells are selected.

AL_SetCellSel is used to select cells procedurally, and can select a single cell, a range of cells,
or a list of cells. You can determine the selected cells using AL _GetCellSel.

When the user scrolls an AreaList Pro object that is in cell selection mode using the Arrow keys
or keyboard type-ahead, the list will scroll, but the cell selection will not change.

Row dragging is disabled when an Arealist Pro object is in cell selection mode.

The enterability options set with AL_SetEntryOpts are fully supported when an Arealist Pro object is in
cell selection mode.

If an ArealList Pro object is in multi-cell selection mode, the Edit menu Select All command is enabled.

Clipboard

The data copied to the clipboard can be formatted using AL SetCopyOpts. This command allows you
to specify the field and record delimiters copied with the data, and whether any hidden column data
should be copied to the clipboard. The Edit menu Copy command is disabled when an Arealist Pro
object has been set to allow cell selection using AL SetCellOpts.

Copying rows to the clipboard will not be allowed when displaying fields. The Copy menu item
will be disabled when fields are displayed. See Field and Record Commands for more information
about displaying fields.

AL SetEditMenuCallback will install a callback method which will be called when any Edit menu action
occurs. You have the option of overriding an 4D edit action for a given ArealList Pro area, providing an
extensive customization interface when using Edit menu. See Edit menu callbacks.

Selection - Clipboard 53

Configuring Arealist Pro Using Commands

Picture Columns

Areal st Pro supports the display of picture columns. The format parameter of AL_SetFormat will cause
the picture to be displayed in one of several ways:

truncated and justified to the upper left of the cell

truncated and centered in the cell

scaled to fit the cell

scaled proportionally to fit the cell
The usePictHeight parameter of this command will tell Arealist Pro whether to use a picture’s original
height, which is stored with the picture, when calculating the row height for the ArealList Pro area.
If you choose not to use the picture’s height in the row height calculation and additional space is

needed to display the picture, the numRowLines parameter of AL SetHeight should be used to increase
the row height.

Scroll Bars — Changing Displayed Form

If an AreaList Pro object is displayed on a form in a window, and another form is going to be displayed
in the window with DIALOG, ADD RECORD or MODIFY RECORD commands, you must inform the
ArealList Pro object that another form will be displayed.

Overview

This is done by calling the following command whenever another form is about to be displayed:

AL_SetScroll(elist;0;0) “inform Arealist Pro object that another form will be displayed.

where elist is the name of the ArealList Pro object on the original form. If this is not done, the ArealList
Pro object’s scroll bars may be active on the other form. Scrollbars will be set back to visible next time
the Arealist Pro area is redrawn, so the call above should the be last command sent to the ArealList Pro
area before the new form is displayed.

AL_SetScroll (eList;0;0) hides the scrollbars until the next update of the area content. To prevent the
scrollbars to appear again, use SET VISIBLE together with AL_SetScroll. AreaList Pro areas that are not
visible will not receive any update request that may be sent to them.

Details: Disabling an Arealist Pro Area

The following only applies to AL_SetScroll (eList;0;0). Other parameters like -2 and -3 may hide the
scrollbars, but do not have the same effect.

AL_SetScroll (eList;0;0) not only hides the scrollbars, but disables any interaction with the system (event
handling) for the given area.

Keep in mind that the next area update event received from 4D or the system will re-enable the area’s
scroll bars and event management.

Picture Columns - Scroll Bars — Changing Displayed Form 54

Configuring Arealist Pro Using Commands

The following code will work and leave the area disabled:
AL _SetScroll (elist;0,;0) “inform Arealist Pro object that another form will be displayed.
DIALOG ([MyTable];"MyDialog")

However, the following code:
AL_SetScroll(elist;0;0)
CONFIRM ("Do you want to display the dialog?")
If (OK=1)
DIALOG ([MyTable];"MyDialog")
“do something

End if

will not work, because of the CONFIRM dialog box, which triggers an update event to the underlying
Arealist Pro area. The correct order is as follows:
CONFIRM ("Do you want to display the dialog?")
If(OK=1)
AL_SetScroll(elist;0,0)
DIALOG ([MyTable];"MyDialog")
“do something

End if
In case of doubt or complex code, the developer can also use SET VISIBLE:

SET VISIBLE (cList;False]
AL SetScroll(elist;0;0)
“do something

SET VISIBLE (cList:True

If the area is not visible, it cannot get update events, therefore invisible areas disabled with
AL_SetScroll (eList;0;0) won't get any update event and can’t be enabled until SET VISIBLE (eList; True)
is called.

The above is needed only when the developer displays a new form in the same window, not when the
page is switched or another window is used.

The AL_SetScroll (area;0;0) system applies to AreaList Pro Drop Areas as well. See Drop Area.

Scroll Bars — Changing Displayed Form 55

Configuring Arealist Pro Using Commands

Drag and Drop — Changing Form Pages

If the drag and drop feature of AreaList Pro is used on a multi-page layout, a similar action must be
performed. When pages are changed in the layout, you must ensure that drag and drop is enabled only
for AreaList Pro areas on the current page (if this feature is desired), and that drag and drop is disabled
for any ArealList Pro areas on other pages. Please read the section AreaList Pro on Multi-Page Layouts for
more information.

AL _SetDropDst should be used to disable a Drop Area on the current page when moving to a different
layout page. Please read the section Drop Area Objects on a Multi-Page Layout for more information.

Using Arealist Pro on a Resizable Window

ArealList Pro adds support for 4" Dimension resizable windows. We recommend you use 4D’s built-in
resizing capability. Please refer to the 4D documentation for information on making a 4D form and its
objects resizable.

Performance Issues with Formatting Commands

ArealList Pro uses an algorithm to automatically size the columns. Because of this, there is usually no
need to use AL SetWidths to manually size a column prior to displaying a list.

However, if the number of items in the list is very large (several thousand items with many columns), then

the list might take one or two seconds to display, due to the automatic sizing calculation. If this is the case,
using AL_SetWidths will improve the display time of the list. Text and string columns will take the longest
to automatically size. Since you can use AL_SetWidths on just some of the columns, if you are displaying
very large arrays, but only one is text or string, you could use the AL_SetWidths command on just the text
or string column, and let ArealList Pro automatically calculate the other column widths.

To determine the optimum width for a column, you can display the pixel widths of columns in the
headers during your design process, and then use AL_SetWidths to set the width. See Column Widths
and the AL_SetWidths definition for more information.

When Arealist Pro displays fields, the automatic column sizing algorithm uses only the first 20
records (or less, if the selection contains less than 20 records) in the selection. These records are
always read regardless of whether the columns are automatically or manually sized. Therefore there
is no performance penalty using the automatic column sizing algorithm when displaying fields.

See Field and Record Commands for more information about displaying fields.

AL SetFormat does not affect the performance of ArealList Pro, regardless of the size of the columns
being displayed. This is because AreaList Pro is using 4D’s array data directly, and as the list is scrolling,
the formatting is being done “on-the-fly.”

Sorting the columns will have the greatest impact on the time required for AreaList Pro to be displayed
in the On load phase or updated in the callback method. If you will be displaying many large columns,
you can reduce the display time by turning off the automaticSort option using AL_SetSortOpts.

Drag and Drop — Changing Form Pages - Using ALP on a Resizable Window - Performance Issues with Formatting Commands 56

Configuring Arealist Pro Using Commands

Borders and Frames

AL SetCellBorder provides the ability to set the border style for a cell.

AL SetCellFrame draws a frame around a range of cells.

Both commands use RGB colors.

Header/Cell Icon Support

The Escape Sentence System

Arealist Pro provides the ability to display icons in AreaList Pro headers (AL_SetHeaders) and cell data
(AL_SetFormat), using picture data contained in the “cicn” or “PICT” resources, or items stored in the
4% Dimension Picture Library.

For example, when creating the arrays or header values, you can instruct AreaList Pro to display any
picture type data using the following formatting options:

First Mame [Last M. |Salary | T Arrival Sex City

Mike Erickson % 1,000.00 310PHM &, m Tapei

Dan Clark ¥ 19,822.468 1:254M &, @ Denver
Roger Euoy ;3 19,83030 149pM &, @ Telluride
John Mar kaff $ 20,4634 1:23PME, M Fhoenizx

Russ Hawvard % 20,953.38 11:07aM &, & Redrond

Dan Shafer % 21,181.72 Sdeam 8, & Ft. worth
Mike Kramer ;3 21,337.54 G:474M 8, & San Francizco
Jim Bartima t 21 asss 1250pM B M Dallas

CeLL DATA PicTURE ExAMPLE (BOOLEAN FIELD)

An “escape sentence” system can be used for headers and individual cells. If any text (cell, header, etc

)

contains an escape sentence, an icon is drawn instead of the sentence. Based on the number, it may be

a “cicn” resource, a “PICT” resource or a Picture Library object.

Borders and Frames - Header / Cell Icon Support

57

Configuring Arealist Pro Using Commands

Using Icons with Escape Sentences

To display an icon in the header, reference the icon resource as "*nnnHeader", where nnn is the desired
“cicn” resource ID:

AL SetHeaders (areq;1;1;"2150Header")

To display the icon at the end of the text, reference the icon resource as "Headernnn" where nnn is the
desired “cicn” resource ID.

806 alp.rsrc
Types |26 “cicn” (Color Icon) Resources:
4BNH A Y
4pk* - . .
ALRT | ;13027 AreaList™ Pro popup XP b
A1)
CC4D
cicn
CURS . . .
deth ;15028 Arealist™ Pro popup small Yista
DOt
DITL
dlgx
DLOG . . .
FO4D i 19029 AreaList™ Pro popup Yista m
FOM®
ICON
PAT*
PICT = . .
pltt i 15030 C5_Date_Pop
SH#
Stlx
STR*
THrM#
VAR® ;15040 @, “Time Pop ™
¥ers
4 " 1soso 30 “DateTime Fop”
v
[Select All) [Reverse | { Open)
[Changed) [MNone) [Mew |

CELL DATA ICON EXAMPLE (BOOLEAN FIELD)

If you want to use “PICT” resources instead of “cicn”, add the 4D constant Use PICT resource to the
resource |D:

AL SetHeaders (areq;1;1;"2"+String (Use PICT resource+150) +"Header")

See the 4th Dimension Language Reference regarding the SET LIST ITEM PROPERTIES command,
which uses the same icon syntax.

When displaying icons in headers, it may be necessary to adjust the header height to accommodate the
height of the icon. You can use the AL SetHeight routine to increase the size of an Arealist Pro header
based on your requirements.

The default “escape” character (used in the call before the icon resource ID) can be modified with
AL _SetPictureEscape and retrieved using AL_GetPictureEscape.

Similarly, if you wish to display icons in cell data, you would use the same technique when building the
arrays for which you are using in the Arealist Pro area.

Header / Cell Icon Support 58

Configuring Arealist Pro Using Commands

Using Picture Library Items with Escape Sentences

If you would like to use an item from the 4D Picture Library, you would reference the picture ID as “Use
PicRef + N”, where N is the reference number of a picture from the Design environment Picture Library.

Use PicRef is a 4D constant. See the 4th Dimension Language Reference regarding the SET LIST ITEM
PROPERTIES command, which uses the same icon syntax.

o0 Picture Library
" Picture View Tools i
|ALF_059_Checked 8844] FNomo e ol a s
| ALP_059_Unchecked 8857 % -
| ALP_0SX_Checked geoft| CH|®T[ZF]|# | > 3|0
| ALP_0SX_Unchecked sslfff S

| ALP_Win_Checked ss2|i|

| ALP_Win_Unchecked s83) |

|Button 2000 Add Re... g7efl |

| Button 2000 Cancel 870f |

|Button 2000 Delete . ge1) |

| Button 2000 Done B77L |

\Button 2000 First Re... 867} |

‘Button 2000 Last Re... 865[| El

|Button 2000 Next F... B750 |

‘Button 2000 Next R... Be4) |

| Button 2000 0K 862} |

' Button 2000 Order By 851} |

| Button 2000 Previou. .. 276N

|Button 2000 Previou... 863 |

|Button 2000 Query B54/|

{Ruttan 300N Show Al LTI

£ MNew O [Delete) |} 2 KD (16,16

PicTURE LIBRARY CONTAINING CUSTOM CHECKBOXES

For example, if you would like to configure boolean columns to display custom checkbox icons instead
of the traditional text (True;False), you can use the AL_SetFormat routine to provide references to icon
resources contained in the 4D Picture Library.

$iconStr:="A"+String (Use PicRef + 880)+";"+"A"+String (Use PicRef + 881)
AL_SetFormat (elist; 1;$iconStr)

Header / Cell Icon Support 59

Configuring Arealist Pro Using Commands

| Mailing Marne |E-Mail Address |

g All Members genetal@domain.com &

E All Mon-Members * i

E Board of Directors board@dornain.cormn Al

1 City Managers Committee

E Conference narme@dornain.com

1 Emecutive Committes : |

a Finance Officers Committes finance@nnydornain.com :

[General Liability Attarneys '_

E Guest quest@darnain.com o
1 JPIa Staff

1 Liability Trust Fund

E Mewwzlatter

1 Patential Members k.

1 Training Certificate Letter :' |

«E — - - =] e

CuUSTOMIZED BOOLEAN COLUMN USING CHECKBOX ICONS FROM 4D PICTURE LIBRARY

The default “escape” character (used in the call before the icon Picture Library ID) can be modified with

AL SetPictureEscape and retrieved using AL GetPictureEscape.

Longint Reference System

Resources and Picture Library items are also used by AL SetCelllcon, which places icons into individual
cells and AL SetHeaderOptions, which provides the ability to customize the interface over the scrollbars

(sort area). AL_GetHeaderOptions returns the current setting for the area.

These routines include an iconRef parameter, which is one of the following:

N, where N is the resource ID of Mac OS-based “cicn” resource

Use PICT resource + N, where N is the the resource ID of a Mac OS-based “PICT” resource

Use PicRef + N, where N is the reference number of a picture from the Design environment

Picture Library

pass zero (0) if you do not want any icon for the header or the cell

Picture Objects in Headers

In addition, AL_SetHeaderlcon provides the ability to procedurally place icons in column headers using
4D picture objects (fields or variables).

Header / Cell Icon Support 60

Configuring Arealist Pro Using Commands

Commands

AL _Register

(registrationKey:S) = resultCode:L

Parameter Type Description
— registrationKey string Registration key
+ resultCode longint Result code

AL_Register is used to register the Arealist Pro plug-in for standalone or server use.

You must call AL_Register with a valid registration key; otherwise AreaList Pro will operate in

demonstration mode.

Without a valid registration key, AreaList Pro will operate in demonstration mode during 20 minutes.

Like all e-Node plug-ins, ArealList Pro offers six different license types. There are no such things as

MacOS vs Windows or Development vs Deployment:

Single user license. This license allows development (interpreted mode) or deployment
(interpreted or compiled mode) on 4D Standalone or Runtime. Since the registration key is
linked to a specific 4D license, you need to provide the number returned by the 4D command
GET SERIAL INFORMATION (first parameter). A new license will be provided for free at any
time if you change your 4D version and/or get a new 4D registration key.

Small server. This license allows development (interpreted mode) or deployment (interpreted
or compiled mode) on 4D Server up to 10 users. The registration key is linked to your 4D Server
license just as above.

Medium server. This license allows development (interpreted mode) or deployment (inter-
preted or compiled mode) on 4D Server up with 11 to 20 users. The registration key is linked to
your 4D Server license just as above.

Large server. This license allows development (interpreted mode) or deployment (interpreted
or compiled mode) on 4D Server over 20 users. The registration key is linked to your 4D Server
license just as above.

Unlimited Single User. This license allows development (interpreted mode) or deployment
(interpreted or compiled mode) on as many 4D Standalone, Runtime or Engine copies that run
your 4D application(s). This is a yearly license, which expires one month after the date when it
is to be renewed. The expiration only affects interpreted mode. Compiled applications using an
obsolete license will never expire.

Unlimited OEM. This license allows development (interpreted mode) or deployment (in-
terpreted or compiled mode) on as many 4D Server (of any umber of users), 4D Standalone,
Runtime or Engine copies that run your 4D application(s). This is a yearly license, which expires
one month after the date when it is to be renewed. The expiration only affects interpreted mode.
Compiled applications using an obsolete license will never expire.

A 4D database used to retrieve your 4D serial information is available from the following link:

http://www.e-node.net/ftp/GetSeriallnfo

AL_Register 61

http://www.e-node.net/ftp/GetSerialInfo

Configuring Arealist Pro Using Commands

The registration system has been modified in version 8.3. Only one registration key is now required.

registrationKey — Pass the registration key to register your copy of AreaList Pro. Only one registration
key is required. The key is either linked to the 4D or 4D Server serial number (individual licenses), or to
the name of the company/developer (unlimited annual licenses).

Multiple calls to AL_Register are allowed. The plug-in will be activated if at least one valid key is used.

resultCode — This will return a value of 1 if the registration key is valid and a value of 0 if the registration
key is invalid. You should verify the correctness of the registration key by tracing over the call to
AL_Register and examining resultCode.

Example:

C_LONGINT ($result)
$result:=AL_Register ("Place your registration key here")
If ($result# 1) “error
ALERT ("Arealist Pro could not be registered:"+String ($result))
End if

Example with multiple calls:

C_LONGINT ($result) “ignored in this case
$result:=AL_Register ("Registration key one”)
$result:=AL_Register ("Registration key two")
$result:=AL_Register|"Registration key three”)

“etfc.

% ArealListPro

%ArealistPro is the command used to identify the AreaList Pro plug-in area when you create a plug-in
area object on a layout. This command is only used in the object definition for an ArealList Pro object,
and should never be used as a command in a method.

AL_Register - %ArealistPro 62

Configuring Arealist Pro Using Commands

AL_SetArraysNam

(areaRef:L; columnNumber:l; numArrays:I; array1:S; ...; arrayN:S) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column at which to set the first array

— numArrays integer Number of arrays to set (up to 15)

— arrayl; ...; arrayN string Names of 4D arrays

+ resultCode integer Result code

AL_SetArraysNam tells AreaList Pro what arrays to display. Up to fifteen arrays can be set at a time.
Any 4D array type can be used except pointer and two-dimensional arrays.

There are three very important points to note about this command:

This command must be called first, before any of the other commands, in the On load phase
or in another phase (form event).

The columns must be added in sequential order, unless the particular column has already been
added. In other words, to set 30 arrays, you must set arrays 1 through 15 prior to setting arrays
16 through 30.

All arrays set with this command must have the same number of elements as each other
and as any other arrays previously set.

AL_SetArraysNam may be called in the On load phase to initially set the arrays to be displayed.

Since Arealist Pro can display up to 512 arrays, this command may have to be used more than once.
However, it is not mandatory to set any arrays in the On load phase; in that case the area on the layout
where Arealist Pro is defined will be blank.

AL_SetArraysNam may be called in other phases (form events) to set arrays to be displayed or to replace
arrays that are already displayed.

You can pass process arrays and interprocess arrays to Arealist Pro, but not local arrays (a local array has
a name that starts with a "$" character; an interprocess array has a name that starts with a "0¢" character
on MacOS and the "<>" characters on Windows).

One dimension of a two-dimensional array may be passed in the array1; ...; arrayN parameters.
For example: “my2DArray{1}” may be passed as array1.

areaRef — Arealist Pro area reference.

columnNumber — This parameter specifies the column number to set the first array being passed by
this call of AL_SetArraysNam.

numArrays — This parameter specifies the number of columns being set with this call
to AL_SetArraysNam.

AL_SetArraysNam 63

Configuring Arealist Pro Using Commands

resultCode — The possible values are:

Constant Value | Action

AL No error in arrays 0

AL Not an array error 1 Check to make sure all arrays are correctly typed

AL Wrong type array error 2 Pointer and two-dimensional arrays are not allowed

AL Wrong number rows error 3 | Make sure that all arrays have the same number of elements

AL Max arrays exceeded error 4 1512 arrays is the maximum

AL Low memory array error 5 Increase 4D’s RAM partition, or change your approach to use
fewer or smaller arrays

Examples:

Case of

:(Form event=0On Load)

SELECTION TO ARRAY ([Contacts]FN;aFN;[Contacts]LN;aLN;[Contacts] City;aCity; [Contacts] State;

aState) ‘load the arrays

$error:=AL_SetArraysNam (elist;1;4;"aFN";"alN";"aCity";"aState") “starting at column 1,

set 4 arrays

End case

“Set up the elist Arealist Pro object with 25 arrays

‘two calls must be made since only 15 arrays can be passed each time

$error:=AL_SetArraysNam (elist;1;15;"array1";"array2";"array3";"array4";"array5";"array6";
"array7";"array8";"array9";"array 10";"array11";"array12";"array13";"array 14";"array 15")

$error:=AL_SetArraysNam (elist;16;10;"array16";"array17";"array18";"array 19";"array20";
"array21";"array22";"array23";"array24";"array25")

AL _InsArrayNam

(areaRef:L; columnNumber:l; numArrays:|; array1:S; ...; arrayN:S) = resultCode:L

Parameter

— areaRef

— columnNumber

— numArrays

— arrayl; ...; arrayN
+ resultCode

Type
longint
integer
integer
string

integer

Description

Reference of AreaList Pro object on layout
Column at which to set the first array
Number of arrays to set (up to 15)

Names of 4D arrays

Result code

AL_InsArrayNam functions the same as AL_SetArraysNam, except that the arrays are inserted before

columnNumber.

AL_SetArraysNam - AL_InsArraysNam 64

Configuring Arealist Pro Using Commands

All subsequent columns will maintain their settings. In other words, any header text, column styles, etc.
will stay with their corresponding array.

Up to fifteen arrays can be set at a time. Any 4D array type can be used except pointer
and two-dimensional arrays. There are three very important points to note about this command:

This command (or AL_SetArraysNam) must be called first, before any of the other commands,
in the On load phase or in another phase (form event).

The columns must be added in sequential order, unless the particular column has already been
added. In other words, to set 30 arrays, you must set arrays 1 through 15 prior to setting arrays
16 through 30.

All arrays set with this command must have the same number of elements as each other and as
any other arrays previously set.

AL_InsArrayNam may be called in the On load phase to initially set the arrays to be displayed.

Since ArealList Pro can display up to 512 arrays, this command may have to be used more than once.
However, it is not mandatory to set any arrays in the On load phase; in that case the area on the layout
where Arealist Pro is defined will be blank.

You can pass process arrays and interprocess arrays to Arealist Pro, but not local arrays (a local array has
a name that starts with a "$" character; an interprocess array has a name that starts with a "0" character
on MacOS and the "<>" characters on Windows).

One dimension of a two-dimensional array may be passed in the array1; ...; arrayN parameters.
For example: “my2DArray{1}"” may be passed as array].
areaRef — Arealist Pro area reference.

columnNumber — This parameter specifies the column number to insert the first array being passed by
this call of AL_InsArrayNam.

numArrays — This parameter specifies the number of columns being set with this call to
AL_InsArrayNam.

resultCode — The possible values are:

Constant Value | Action

AL No error in arrays 0

AL Not an array error Check to make sure all arrays are correctly typed

AL Wrong type array error Pointer and two-dimensional arrays are not allowed

AL Wrong number rows error Make sure that all arrays have the same number of elements

AL Max arrays exceeded error 512 arrays is the maximum

G| [WIN|—

AL Low memory array error Increase 4D’s RAM partition, or change your approach to use

fewer or smaller arrays

Example:

$error:=AL_InsArrayNamielist;4;3;"aFN";"alN";"aComp") “starting at column 4, insert 3 arrays

AL_InsArraysNam 65

Configuring Arealist Pro Using Commands

AL _GetArrayNames

(areaRef:L; resultArray:X; options:L) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
- resu|’rArrc1y array (string or text) Result array of array names

— options longint Return options

+ resultCode longint Result code

AL_GetArrayNames will return an array of array names (when using array display — see AL_GetMode).
If you have used AL InsArrayNam, this routine will not work. You can only use this routine when
configuring arrays via AL_SetArraysNam.

When using this routine, you may return either the complete list of arrays used to setup the list, or only
the visible arrays (see options parameter).

areaRef — Areal.ist Pro area reference.
resultArray — A valid 4" Dimension array (by reference) which will receive the list of array names.

options — Return options:
0 — return only visible arrays (default)
1 — return all arrays

resultCode — The possible values are:

Value |Result Code Action
0 No error
-50 Parameter error Array of wrong type — must be string or text array
-1 Wrong mode See AL_GetMode
-2 Arrays were not created using Make sure that all arrays have been created using
AL_SetArraysNam AL_SetArraysNam, not AL_InsertArrays

AL _RemoveArrays

(areaRef:L; columnNumber:l; numArrays:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column at which to remove the first array
— numArrays integer Number of arrays to remove (up to 512)

AL_RemoveArrays is used to remove arrays from Arealist Pro. numArrays, beginning at columnNumber,

will be removed from the list. AL_GetArrayNames - AL_RemoveArrays 66

Configuring Arealist Pro Using Commands

All subsequent columns will maintain their settings. In other words, any header text, column styles, etc.
will stay with their corresponding array.

Examples:

AL RemoveArrays elist;8;4) “starting at column 8, remove 4 arrays

AL RemoveArrays elist; 1;20) “remove all 20 arrays

AL_UpdateArrays
(areaRef:L; updateMethod:)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
— updateMethod integer Method to use to update the ArealList Pro object

AL_UpdateArrays is used to update ArealList Pro. Use this command whenever any elements of the
arrays being displayed are changed (elements added, deleted, or modified), but the arrays themselves
remain the same.

Warning: in an enterable area, the row containing the currently edited data must not be deleted.
AL ExitCell must be called before the row (array element) is deleted.

AL_UpdateArrays must be called after modifying the arrays and before any other setup commands
(sorting, formatting, etc.).

updateMethod — This parameter tells AreaList Pro how to update the ArealList Pro object areaRef.

Constant Value | Description When to Use
AL Recalculate -2 Rescan all arrays and recalculate all If column or row resizing is
arrays applicable heights, widths, and other necessary, or you have added or removed
related values. The scroll position, and | elements to any of the displayed arrays.
row or cell selection will be reset. Also if you show or hide either scroll bar, the
headers, or footers, or add or remove arrays.
AL Refresh and -1 Refresh the Arealist Pro object, but The Arealist Pro object needs to be
update arrays don’t recalculate any values. updated because of changes to an array

element’s contents, or formatting changes

to colors, styles, etc. This value should only
be used when no column or row resizing

is necessary, since formatting, styles, or an
element’s new contents could affect a column
width or row height.

You may only pass a value of -1 for updateMethod when calling AL_UpdateArrays from a callback
method other than the event callback. -2 can be used in event callback methods.
Please read the section Using Callback Methods During Data Entry for more information.

AL_RemoveArrays - AL_UpdateArrays 67

Configuring Arealist Pro Using Commands

Examples:

‘Any action which modifies an array element value, or changes a configuration attribute
“must include updating the Arealist Pro object
AL_UpdateArrays (elist;-2)

‘bDeleteRows button method
“This example shows how fo delete elements from displayed arrays and how to update Arealist Pro
"The routine deletes selected rows in an Arealist Pro object named elist
“elist is configured for multiple rows selection, and it is displaying three arrays: aFN, alN, aComp
ARRAY LONGINT (aRows;0) “create an long integer array with a size of zero
$OK:=AL_GetSelect elist;aRows) "get the rows selected by the user, put into aRows array
If (§OK=1) “enough RAM was available to resize the aRows array
For ($i;Size of array (aRows);1;-1) “start at the end of the array and go to top
DELETE ELEMENT (aFN;aRows{$i}) “delete the selected element from the three arrays
DELETE ELEMENT (aLN:aRows{$1])
DELETE ELEMENT (aComp;aRows{$i})
End for
AL_GetScroll(elist;vVert;vHoriz) “get current scroll position
AL _UpdateArrays (elist;-2) ‘update the Arealist Pro object

AL_SetScroll elist;vVert;vHoriz) “reset scroll position so it doesn’t change

End if

AL SetHeaders

(areaRef:L; columnNumber:l; numHeaders:I; header1:S; ...; headerN:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column at which to set up the first header
— numHeaders integer Number of headers to set (up to 15)

— header1; ...; headerN string Values to display in column headers

AL_SetHeaders is used to specify the value to display in the header for each column.
Up to fifteen headers can be set at a time.

The size of the header value is used by the automatic column sizing algorithm. If you are displaying a
fixed-string array with an element size of 2 characters, the column will be very narrow, unless you
specify a header which contains several characters.

For example, states are usually stored in a database as a two-character alpha, and you would probably
display them directly or load them into a string array sized for two-characters length. But if you specify a
header of “State” the column will be sized about two and a half times wider.

AL_UpdateArrays - AL_SetHeaders 68

Configuring Arealist Pro Using Commands

If the header length is less than the values being displayed in the column, then the header length will
not affect the column width.

A, B, C, etc. will be displayed in the headers if AL_SetHeaders is not used. The AL_SetHeaders
command can be used in the On load phase or in another phase (form event).

Examples:

$error:=AL_SetArraysNam (elist;1;4;"aFN";"alN";"aCity":"aState")
AL _SetHeaders (elist; 1;4;"First Name";"Last Name";"City";"State")

$error:=AL_SetArraysNam (elist;1;2;"aFN";"alN")
AL_SetHeaders (elist; 1;2;Field name ([People]FirstName);Field name ([People]LastName))

Arealist Pro provides the ability to display icons in AreaList Pro headers. See Header/Cell Icon Support
for information about the use of AL_SetHeaders to display icons in column headers, using picture data
contained in the “cicn” or “PICT” resources, or items stored in the 4™ Dimension Picture Library.

Arealist Pro also includes modern column headers, including direct platform detection. See Headers.

Vista specific behavior: if AreaList Pro does not have enough space (at least 13 pixels) to display the
header, it will be automatically resized to fit. In addition, when using ArealList Pro with Vista, the sort
arrow is centered above the column header, thus you need to take care to make sure that the header
is high enough.

AL GetHeaders

(areaRef:L; headerlist:X; options:L) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ headerList array (text or string) Result header list

— options longint Return options

+ resultCode longint Result code

AL_GetHeaders will return an array of all headers for the defined ArealList Pro area. You may optionally
return only visible headers using the options parameter.

headerList — A valid 4™ Dimension array (text or string) which will contain a list of all area headers.

options — When extracting the list of headers names, you may optionally return only visible headers:
0 — no options, returns all headers (default)
1 — returns only visible headers

resultCode — Returns an error code, or 0 is no error occurred.

The following will build an ArealList Pro area based on field references from a parent and related table.

AL_SetHeaders - AL_GetHeaders 69

Configuring Arealist Pro Using Commands

AL SetHeaders (elist;1;1;"First Name")
AL SetHeaders (elist;2;1;"Last Name")
Then, we'll use the AL_GetHeaders routine to extract the header names.

ARRAY TEXT (atAL_Headerlist;0)
$ret:=AL_GetHeaders (elist;atAlL_Headerlist)

When the routine is complete, the array will have two elements:
atAlL_Headerlist{1} contains "First Name"

atAL_Headerlis{2} contains "Last Name"

AL SetHeadericon

(areaRef:L; columnNumber:l; iconAlignment:| picture:P; horPosition:l; vertPosition:l; offset:l; scaling:)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column at which to set the header icon
— iconAlignment integer Position of icon

— picture picture Icon or picture to use

— horPosition integer Horizontal position

— vertPosition integer Vertical position

— offset integer Pixel offset

— scaling integer Scaling

AL_SetHeaderlcon provides the ability to procedurally place icons in column headers. One or two
icons may be used (left and right).

columnNumber — Desired header column number.

iconA|ignmen’r — Position of icon (a header can contain up to two icons):
0 — places icon on left of header
1 — places icon on right of header

picture — 4D picture object containing the icon (due to limitations of icons drawing in headers,
you must first load the desired icon into a 4D picture object).

horPosition — One the following options:
0 — default (left for left icon, right for right icon)
1 — align left
2 — align center
3 — align right

AL_GetHeaders - AL_SetHeaderlcon 70

Configuring Arealist Pro Using Commands

vertPosition — One the following options:
0 — default (top)
1 — align top
2 — align center
3 — align bottom

offset — Offset of the “icon guide”. The horizontal position is relative to this position.
If the horizontal alignment is center, the icon is centered between the guide and
corresponding side of cell (left for left icon, right for right icon).

The picture below illustrates the icon guide and its offset:

offset
ICON GUIDE AND OFFSET

In the picture below, the left icon is aligned right to the icon guide and the right icon is aligned left to
the icon guide:

LEFT ICON ALIGNED RIGHT - RIGHT ICON ALIGNED LEFT

In the picture below, the left icon is centered between the left border and the icon guide and no right
icon is used:

LEFT ICON CENTERED

scaling — One the following options:
0 — truncated
1 — scaled

The cell content (text) is drawn into the space that is left once the icon is drawn. If the icon is larger than
the remaining available space, the text is drawn over the icon.

For example, if the column width is 100 pixels and you draw a 15 pixel icon, there is remaining width
of 85 pixels where the text will be drawn. If, however, the total width (icon + text) exceeds the column
width, the text will be drawn over the picture. This allows background pictures behind the text.

AL_SetHeaderlcon 71

Configuring Arealist Pro Using Commands

The following example will use the same icon as AL SetCelllcon, but it will first load the icon into a 4D
picture object:

C_PICTURE ($pict)
C_INTEGER ($col;$iconAlign; $horPos; $verPos; $offset; $scaling)

$col:=3 “place icon in 3rd column

$iconAlign:=0 *draw on left

$horPos:=0 “default

$verPos:=2 align center

$offset:=5

$scaling:=0

GET PICTURE FROM LIBRARY (1717;$pici

AL_SetHeaderlcon (eAL_Output; $col; $iconAlign; $pict; $horPos; $verPos; $offset; $scaling)

AL_SetHeaderOptions
(areaRef:L; options:L; iconRef:L; callbackMethod:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— options longint Options attribute

— iconRef longint Reference of the icon or picture to use

— callbackMethod string Header callback method

AL_SetHeaderOptions provides the ability to customize the interface over the scrollbars (sort area).
You can customize the icon which is displayed using a “cicn” or “PICT” resource, or an item from the
4D Picture Library (see details below).

For optimal results, the icon size should be 13w x 12h.

options — Desired options for overriding the sort icon:
0 — no options, use default interface
1 — display custom icon and execute callbackMethod on mouseUp
2 — display custom icon and execute callbackMethod on mouseDown

iconRef — Reference of the icon or picture to use. Both “cicn” and “PICT” resources can be used, as
well as items from the Picture Library.

AL_SetHeaderlcon - AL_SetHeaderOptions 72

Configuring Arealist Pro Using Commands

To associate an icon to the header, pass one of the following numeric values in iconRef
(Use PICT resource and Use PicRef are 4D constants):

N, where N is the resource ID of Mac OS-based “cicn” resource
Use PICT resource + N, where N is the the resource ID of a Mac OS-based “PICT” resource

Use PicRef + N, where N is the reference number of a picture from the Design environment
Picture Library

pass zero (0) if you do not want any icon for the header

See Header/Cell Icon Support for examples. See also the 4™ Dimension Language Reference regarding
the SET LIST ITEM PROPERTIES command, which uses the same icon syntax.

callbackMethod — Desired callback method, which is executed when the icon is clicked:

if you have passed an option value of 1, the callback will be executed when the user releases
the mouse button

if you have passed an option value of 2, the callback will be executed immediately when user
clicks the icon

The icon clicked callback method is passed one parameter by AreaList Pro. This parameter is a long
integer that corresponds to the name of the AreaList Pro object on the layout.
You must use the following declaration in your callback method:
C_LONGINT ($1)
Since the long integer $1 parameter contains 4D’s representation of the Arealist Pro object, it can be
used as the first parameter of any ArealList Pro method called.
The following example will create a custom icon, using a 4D Picture Library item (ID = $pictLibID):
AL_SetHeaderOptions ($AL_AREA;2;$pictliblD+Use PicRef;"SortlconCallback")

|| Hire Date Ilndustry] Salary] l{t,
¢ 04/05/2000 [E Training $4,681.22 4
+ 01/26/1996 Consulting $21,558.58 v

Custom HEADER IcoON AND ACTION

AL_GetHeaderOptions
(areaRef:L; options:L; iconRef:L; callbackMethod:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ options longint Options attribute

+ iconRef longint Reference of the icon or picture

« callbackMethod string Header callback method

AL_GetHeaderOptions will return the attributes set by AL SetHeaderOptions.

AL_SetHeaderOptions - AL_GetHeaderOptions 73

Configuring Arealist Pro Using Commands

AL SetFooters

(areaRef:L; columnNumber:l; numFooters:|; footer1:S; ...; footerN:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column at which to set the first footer

— numFooters integer Number of footers to set (up to 15)

— footer1; ...; footerN string Values to display in column footers

AL_SetFooters is used to specify the value to display in the footer for each column. Up to fifteen footers
can be set at a time. The showFooters option of AL_SetMiscOpts must be enabled.

The size of the footer value is used by the automatic column sizing algorithm the same way that the hea-
der for a column is used. For more information, see AL SetHeaders.

Nothing will be displayed in the footer area if AL_SetFooters is not used. AL_SetFooters can be used in
the On load phase or in another phase (form event).

Example:

For($i;1;Size of array (aSalary))
$Total:= $Total+aSalary{$i}
End for
AL_SetFooters (eEmplist; 3;1;String ($Total))

AL GetFooters

(areaRef:L; footerList:X; options:L) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Areal.ist Pro object on layout
+ footerlList array (text or string) Footer value list

— options longint Option reference

« resultCode longint Result code

AL_GetFooters will return the footer information if you have enabled footers (see AL_SetColOpts).
When calling AL_GetFooters, you have the option of including or omitting invisible column(s).

footerList — A valid 4t Dimension array (text or string) which will contain a list of all area footers.

AL_SetFooters - AL_GetFooters 74

Configuring Arealist Pro Using Commands

options — When extracting the list of footers names, you may optionally return only visible
column footers:

0 — no options, returns all footers (default)
1 — returns only visible column footers

The following example will return all the footer values from visible columns only:
AL SetMiscOpts (elist;0;0;"";1;1)
AL SetColOpts (elist;1;0;0;1) “hide last column
AL_SetFooters (elist;1;1;"Footer1")
AL_SetFooters (elist;2;1;"Footer2")
AL_SetFooters (elist;3;1;"Footer3")
ARRAY TEXT (atAL_FooterlList;0)

$ret:=AL_GetFooters (elist;atAL_Footerlist; 1) “retrieve footer data, only visible columns

When the routine is complete, atAL_Footerlist will contain two elements:
atAL_Footerlist{1} contains “Footer1”

atAL_Footerlist{2} contains “Footer2”

AL SetWidths
(areaRef:L; columnNumber:l; numWidths:I; width1:1; ...; widthN:I)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column at which to set the first width

— numWidths integer Number of widths to set (up to 15)

— width1; ...; widthN integer Pixel widths of columns

AL_SetWidths is used to set the pixel width for one or more columns. Up to fifteen widths can be
set at a time. A width of zero forces a column to be sized automatically based on its data type.

A column cannot be less than 3 pixels wide. If you pass a value of less than 3 but greater than zero,
Arealist Pro will ignore it and use 3. Arealist Pro will not let a column be wider than the width of the
list area minus 20.

If not called, the default width for all columns is determined based on the type of array or field displayed
in the column and the footer for the column.

AL_SetWidths can be used in the On load phase or in another phase (form event).
Example:
$error:=AL_SetArraysNam (elist;1;5;"aFN";"aLN";"aCity";"aState";"aZip")
AL_SetWidths (elist; 1;5;150,50;0;100;0) "0 forces autosizing for that column

You can get the column widths using AL_GetWidths.

AL_GetFooters - AL_SetWidths 75

Configuring Arealist Pro Using Commands

AL SetFormat

(areaRef:L; columnNumber:I; format:S; columnlust:l; headerJust:l; footerJust:l; usePictHeight:|)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— columnNumber integer Column at which to set the format and justification
— format string Format to use

— columnJust integer Justification for column list items

— headerJust integer Justification for column header

— footerJust integer Justification for column footer

— usePictHeight integer Use the picture height in the row height calculation

AL_SetFormat is used to control the format and justification of a column being displayed.

You can control the format of string, integer, long integer, real, date, boolean, and picture columns with
the format parameter. Time values can be formatted also, since they use long integer arrays. Any valid
4D format, including custom formats created in the Design environment, may be used with these
column types, except for string arrays. Text columns cannot be formatted.

Additionally, null time and date values can be set to display a blank by appending a dash character (“-”)
to the format string parameter.

The defaults for the different column types are:

Column Type Format
Integer “h, 840"
Long Integer “R Rk EHO7
Real “B B8E £#£0.007
Boolean “True;False”
Date “0”
Picture “0”

These values are initialized at startup from the STR# 15023 resource.

In European versions, this resource has been modified as follows:

Column Type Format
Integer “B% #10”
Long Integer “# #Ek #4207
Real “# ### #40,00”

In addition, the French version of ArealList Pro initializes the boolean format as “Vrai;Faux”.

See AL SetDefaultFormat, which can be used to modify the default formats for all Arealist Pro areas.

AL_SetFormat 76

Configuring Arealist Pro Using Commands

format (for string arrays) — Any formatting characters supported for 4D are allowed.
Pre-defined styles (i.e. those saved in the Design environment) are not allowed.

format (for text arrays) — Not supported.

format (for numeric arrays) — See the 4D command String in the 4D Language Reference for the pos-
sible values. Any valid 4D numeric format may be used.

format (for boolean arrays) — The string contains two formats, one for the True value, the other
for the False value, separated by a semicolon. Examples: “Male;Female” and “MacOS;Windows.”

format (for date arrays) — See the 4D String command in the 4D Language Reference for the
possible values. Any valid 4D date format may be used. Examples: “0” or “3” are valid formats.

Format | Example

0 09/20/07 (default)
9/20/07
Thu, Sep 20, 2007
Thursday, September 20, 2007
09/20/07 or 09/20/1997
September 20, 2007

Sep 20, 2007

DU | W[IN|—

format (for “time” arrays) — See the 4D String command in the 4D Language Reference, and the

4D Design Reference discussion of formatting for the possible values. There are no time arrays in 4D as
such, they are in reality long integer arrays. These arrays are displayed as time AL_SetFormat values by
using the proper format. The format is the two character sequence “&/” followed by the number given in
the discussion of the String command. For example, one proper format for a time array would be “&/2".

Format | Example

01:02:03

01:02

1 hour 2 minutes 3 seconds

1 hour 2 minutes
1:02 AM

G [WIN|—

format (for picture arrays):
0 — the picture will be truncated, if necessary, and justified to the upper left (default)
1 — the picture will be truncated, if necessary, and centered in the cell
2 — the picture will be scaled to fit the cell
3 — the picture will be scaled to fit the cell, and remain proportional to its original size

AL_SetFormat 77

Configuring Arealist Pro Using Commands

columnJust, headerJust, and footerJust — The justification for a column, its header, and its footer
can be controlled independently. The possible values are:

Value | Justification
0 Default
1 Left
2 Center
3 Right

By default, headers are left justified, unless the column elements are center justified. In that case,
the header will default to center justification.

The default footer justification corresponds to the column justifications, which for the different column
types are:

Column Type Default Column Justification
Integer right

Long Integer (including Time) | right

Real right

Boolean left

Date right

String left

Text left

Picture n/a — see the format parameter

The columnJust parameter is ignored for picture columns. Use the format parameter to justify picture columns.

usePictHeight:
0 — ignore the picture height when calculating the row height (default)
1 — use height of the largest picture when calculating the row height

If the column columnNumber does not have a picture column, this parameter will be ignored.
AL_SetFormat can be used in the On load phase or in another phase (form event).
Examples:

‘Format a real column (3rd column), default column justification, center header justification,
and default footer justification
AL _SetFormat(names;3;"$### ###.00";0;2;0;0)

‘Format a string (2nd column), default column justification and default header justification,
center footer justification

AL_SetFormat(eContacts;2;" (###) ###-####",0,0,2;0)

‘Format a boolean column (4th column), right column justification and left header justification
AL SetFormat elist;4;"Male;Female";3;1;0;0)

‘Format style 3 for a date column, default justification (5th column), default column, header,

and footer justification
AL_SetFormat elist;5;"3")

AL_SetFormat 78

Configuring Arealist Pro Using Commands

‘Format style 2 for a time column, right justification for header and column (7th column)
AL _SetFormat elist;7;"&/2";3;3,0;0)

*Custom format style, default justification for column, center header (5th column)
AL _SetFormat elist;5;" | Dollars";0;2;0;0)

*Scale picture column to fit proportionally (1st column), use default header and footer justification,
and use picture size in row height calculation
AL_SetFormat elist;1;"3";0;0;0;1)

See also Header/Cell Icon Support for information about the use of AL_SetFormat to display icons
in cell data, using picture data contained in the “cicn” or “PICT” resources, or items stored in
the 4" Dimension Picture Library.

AL SetDefaultFormat

(selector:L; format:S)

Parameter Type Description
— selector longint Selector (data type for which to modify the default)
— format string Desired format

AL_SetDefaultFormat sets the default format for the specified type to apply to all ArealList Pro areas to
be created. Existing areas are not affected.

The format can eventually be modified for any column of any area using AL SetFormat.

selector — indicates the data type for which to set the default format:

Constant Value | Data Type
AL Format Integer 1 Integer

AL Format Longint 2 Long Integer
AL Format Real 3 Real

AL Format Boolean 4 Boolean

AL Format Date 5 Date

AL Format Picture 6 Picture

format — Format to use for the data type specified by selector. The format is specified as a string. See
AL SetFormat.

Example:

"Modify the default format for pictures (“0” = truncated, if necessary, and justified to the upper left)
to “2" = scaled to fit the cell
AL _SetDefaultFormat (AL Format Picture;"2")

AL_SetFormat - AL_SetDefaultFormat 79

Configuring Arealist Pro Using Commands

AL GetFormat

(areaRef:L; columnNumber:I; format:S; columnlust:l; headerJust:l; footerJust:l; usePictHeight:|)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— columnNumber longint Desired list column

+ format string Format used

+ columnJust integer Justification for column list items

+— headerJust integer Justification for column header

+ footerJust integer Justification for column footer

+ usePictHeight integer Use the picture height in the row height calculation

AL_GetFormat will return the formatting attributes for the supplied column number (see AL SetFormat

for information on setting column display attributes).

format — Returns the defined column format string. There are many formatting options, which can

be used to customize the appearance of a given Arealist Pro column. For a complete list of formatting

options, please refer to the AL_SetFormat routine.
columnlJust — Returns the defined column justification value.
headerJust — Returns the defined header justification value.
footerJust — Returns the defined footer justification value.

usePictHeight — Returns the usePictHeight property.
The following example will set the formatting attributes for a given ArealList Pro area cell:

‘Format a real column (3rd column), default column justification, center header justification,
and default footer justification

AL SetFormat (elist;3;"$### ###.00";0;2;0;0)
Then, we'll use the AL_GetFormat routine to extract the formatting values:
C_STRING (32;$sFormat)
C_LONGINT ($collust; SheaderJust; $footer)ust; $usePictHeight)
AL_GetFormat (elist;3; $sFormat; $collust; $header)ust; $footerJust; $usePictHeight)

When the routine has completed, the following values will be returned:
$sFormat contains “$### ###.00”
$collust contains O
$headerust contains 2
$footerJust contains O

$usePictHeight contains 0
AL_GetFormat

80

Configuring Arealist Pro Using Commands

AL _SetHdrStyle

(areaRef:L; columnNumber:I; fontName:S; size:l; styleNum:1)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column for which to set the header style
— fontName string Name of the font to use

— size integer Size of the font

— styleNum integer Style of the font

AL_SetHdrStyle is used to control the appearance of the ArealList Pro column headers. The columns
can be controlled individually or as a group.

columnNumber — This parameter specifies what column header to apply the style to. Use a value of
zero (0) to apply the parameters to all columns.

fontName — Use this parameter to specify the font for the specified columnNumber. If not called,
or the specified fontName is not found, the header(s) will be displayed with the default font.

See AL_SetDefaultStyle. If the font specified by fontName is not installed, then the default font will
be used.

size — Use this parameter to specify the font size for the specified columnNumber. If not called, the
header(s) will be displayed in the default size. See AL_SetDefaultStyle.

styleNum — The styleNum is a font style code. By adding the codes together, you can combine styles.
The numeric codes for styleNum are shown below:

Style Number
Plain 0
Bold 1
Italic 2
Underline 4
Outline 8
Shadow 16
Condensed 32
Extended 64

AL_SetHdrStyle can be used in the On load phase or in another phase (form event).

AL SetDefaultStyle can be used to set the default values for the list data, the headers and the footers of
all ArealList Pro areas.

Examples:
AL_SetHdrStyle (elist; 1;"Geneva";12;1) *Geneva 12 point bold, column 1
AL_SetHdrStyle (elist;0;"Palatino"; 10;3) *Palatino 10 point bold italic, all columns
AL_SetHdrStyle 81

Configuring Arealist Pro Using Commands

AL GetHdrStyle

(areaRef:L; columnNumber:L; fontName:S; size:l; styleNum:I)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Desired list column

+ fontName string Name of the font used

+size integer Size of the font

+ styleNum integer Style of the font

AL_GetHdrStyle returns the formatting options set using the AL_SetHdrStyle routine. For complete
information on the values which are returned, please refer to the AL_SetHdrStyle routine for parameter
descriptions.

The following example will retrieve the information set using the AL_SetHdrStyle routine:
C_LONGINT ($fontSize; $fontStyle)
C_TEXT ($fontName)
AL_GetHdrStyle (elist; 1; $fontName; $fontSize; $fontStyle)

AL _SetFtrStyle

(areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column for which to set the footer style
— fontName string Name of the font to use

— size integer Size of the font

— styleNum integer Style of the font

AL_SetFtrStyle is used to control the appearance of the ArealList Pro column footers. The columns can
be controlled individually or as a group.

columnNumber — This parameter specifies what column footer to apply the style to. Use a value of
zero (0) to apply the parameters to all columns.

fontName — Use this parameter to specify the font for the specified columnNumber. If not called,
or the specified fontName is not found, the footer(s) will be displayed with the default font.

See AL_SetDefaultStyle. If the font specified by fontName is not installed, then the default font will
be used.

AL_GetHdrStyle - AL_SetFtrStyle 82

Configuring Arealist Pro Using Commands

size — Use this parameter to specify the font size for the specified columnNumber. If not called, the
footer(s) will be displayed in the default size. See AL SetDefaultStyle.

styleNum — The styleNum is a font style code. By adding the codes together, you can combine styles.
The numeric codes for styleNum are shown below:

Style Number
Plain 0
Bold 1
Italic 2
Underline 4
Outline 8
Shadow 16
Condensed 32
Extended 64

AL_SetFtrStyle can be used in the On load phase or in another phase (form event).

AL SetDefaultStyle can be used to set the default values for the list data, the headers and the footers of
all Arealist Pro areas.

AL _GetFtrStyle

(areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Desired list column

+ fontName string Name of the font used

+size integer Size of the font

+ styleNum integer Style of the font

AL_GetFtrStyle returns the formatting options set using the AL SetFtrStyle routine. For complete
information on the values which are returned, please refer to the AL_SetFtrStyle routine for parameter
descriptions.

The following example will retrieve the information set using the AL_SetFtrStyle routine:
C_LONGINT ($fontSize; $fontStyle)
C_TEXT ($fontName)
AL_GetFtrStyle (elist; 1;$fontName; $fontSize; $fontStyle)

AL_SetFtrStyle - AL_GetFtrStyle 83

Configuring Arealist Pro Using Commands

AL _SetStyle

(areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)

— size

Parameter

— areaRef

— columnNumber
— fontName

— styleNum

Description

Reference of Arealist Pro object on layout
Column for which to set the style

Name of the font to use

Size of the font

Style of the font

AL_SetStyle is used to control the appearance of the ArealList Pro columns. The columns can be

controlled individually or as a group.

columnNumber — This parameter specifies what column to apply the style to. Use a value of zero (0)

to apply the parameters to all columns.

fontName — Use this parameter to specify the font for the specified columnNumber. If not called,
or the specified fontName is not found, the column(s) will be displayed with the default font.
See AL SetDefaultStyle. If the font specified by fontName is not installed, then the default font will

be used.

size — Use this parameter to specify the font size for the specified columnNumber. If not called, the
column(s) will be displayed in the default size. See AL SetDefaultStyle.

styleNum — The styleNum is a font style code. By adding the codes together, you can combine styles.

The numeric codes for styleNum are shown below:

Style Number
Plain 0
Bold 1
Italic 2
Underline 4
Outline 8
Shadow 16
Condensed 32
Extended 64

AL_SetStyle can be used in the On load phase or in another phase (form event).

AL SetDefaultStyle can be used to set the default values for the list data, the headers and the footers of

all Arealist Pro areas.

Examples:

AL _SetStyle (elist;0;"Geneva";9;0) "Geneva 9 plain, all columns
AL SetStyle (elist;4;"Helvetica";12;32) *Helvetica 12 point condensed, 4th column

AL_SetStyle 84

Configuring Arealist Pro Using Commands

AL _SetDefaultStyle

(selector:L; fontName:S; size:L; styleNum:L)

Parameter Type Description

— selector longint Selector (area part for which to modify the default)
— fontName string Name of the font to use

— size longint Size of the font

— styleNum longint Style of the font

AL_SetDefaultStyle is used to control the list data, the headers and/or the footers appearance of all
Arealist Pro areas to be created. Existing areas are not affected.

The appearance can eventually be modified for any part of an area using AL_SetHdrStyle, AL SetFtrStyle
and AL SetStyle.

selector — indicates the area part for which to set the default appearance:

Constant Value |Area Part
AL Style Header 1 Header
AL Style List 2 List data
AL Style Footer 3 Footer

fontName — Use this parameter to specify the font for the area part specified by selector.
size — Use this parameter to specify the font size for the area part specified by selector.

styleNum — The styleNum is a font style code. By adding the codes together, you can combine styles.
The numeric codes for styleNum are shown below:

Style Number
Plain 0
Bold 1
Italic 2
Underline 4
Outline 8
Shadow 16
Condensed 32
Extended 64

AL_SetDefaultStyle 85

Configuring Arealist Pro Using Commands

The defaults for the different area parts depend on the plaform used.

MacOS defaults are:

Selector Font Size Style
AL Style Header Lucida Grande 13 0
AL Style List Lucida Grande 11 0
AL Style Footer Lucida Grande 11 0
Windows defaults are:

Selector Font Size Style
AL Style Header Tahoma 13 0
AL Style List Tahoma 11 0
AL Style Footer Tahoma 11 0

These values are initialized at startup from the STR# 15024 resource.

ArealList Pro versions prior to 8.1 used the following defaults: Geneva, 12, 0; Geneva, 10, 0; Geneva,

10, 0.

Example:

‘Modify the default style for headers on Windows (Tahoma, 13, 0)

to Arial 12 bold

AL_SetDefaultStyle (AL Style Header;"Arial”;12;1)

Description

Reference of Arealist Pro object on layout
Desired list column

Name of the font used

Size of the font

AL_GetStyle
(areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)
Parameter Type
— areaRef longint
— columnNumber integer
+ fontName string
+size integer
+ styleNum integer

Style of the font

AL_GetStyle returns the formatting options set using the AL SetStyle routine. For complete information
on the values which are returned, please refer to the AL_SetStyle routine for parameter descriptions.

The following example will retrieve the information set using the AL_SetStyle routine:
C_LONGINT ($fontSize; $fontStyle)

C_TEXT ($fontName)

AL_GetStyle (elist; 1; $fontName; $fontSize; $fontStyle)

AL_SetDefaultStyle - AL_GetStyle 86

Configuring Arealist Pro Using Commands

AL_SetRowOpts

(areaRef:L; multiRows:I; allowNoSelection:I; dragRow:l; acceptDrag:l; moveWithData:l;
disableRowHighlight:1)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— multiRows integer Single or multiple rows selection

— allowNoSelection integer Allow no rows to be selected in single-row mode
— dragRow integer Drag a row to this or another object

— acceptDrag integer Accept drag from another ArealList Pro object

— moveWithData integer Move row style and color with row

— disableRowHighlight integer Disable highlighting of selected rows

AL_SetRowOpts is used to control several ArealList Pro options pertaining to rows.

multiRows:
0 — allow only one row to be selected (default)
1 — allow the user to ctrl/command-click, shift-click,or drag to select multiple rows

In multi-rows mode, no rows are initially selected unless AL SetSelect is used.

In single-row mode, the first row is selected unless AL Setline is used.

allowNoSelection:
0 — the user can not deselect a row (default)
1 — the user can ctrl/command-click to deselect a row in single-row mode

Regardless of the value of allowNoSelection, AL_SetLine can be used with the rowNumber parameter
set to 0 to set the selection to no rows.

dragRow — This parameter controls dragging of the area rows. See Drag and Drop
and Dragging Commands.

0 — do not allow a row to be dragged (default)

Values 1, 2, and 3 enable a row to be dragged while the option/alt key is pressed:
1 — allow a row to be dragged within, but not out of the AreaList Pro object
2 — allow a row to be dragged out of, but not within the AreaList Pro object
3 — allow a row to be dragged both within and out of the ArealList Pro object

Values 4, 5, and 6 enable a row to be dragged without any modifier key:
4 — allow a row to be dragged within, but not out of the ArealList Pro object
5 — allow a row to be dragged out of, but not within the ArealList Pro object
6 — allow a row to be dragged both within and out of the Areal.ist Pro object

AL_SetRowOpts

87

Configuring Arealist Pro Using Commands

If a row is dragged without any modifier key, dragging to select multiple rows will not work.

If the row is dragged to another position within the list, AreaList Pro will automatically rearrange
the whole list. If the row is dragged out of the list to another ArealList Pro object, it is up to you to
remove and insert row(s) as necessary.

acceptDrag:
0 — this Arealist Pro object will not accept a row (default)
1 — this ArealList Pro object will accept a row dragged from another ArealList Pro object

moveWithData — This parameter is used with various formatting commands such as AL SetCellEnter,
AL SetRowsStyle, AL SetRowColor, AL _SetRowRGBColor, AL SetCellStyle, AL SetCellColor and
AL SetCellRGBColor:

0 — the row style and color information will not move with the row

1 — the row style and color information will move with the row whenever the ArealList Pro
object is sorted or a row is dragged within the list (default)

This parameter is ignored when displaying fields. See Drag and Drop and Dragging Commands for more
information.

disableRowHighlight:
0 — all selected rows will be highlighted when selected (default)
1 — no rows will be highlighted when selected

When disableRowHighlight is set to 1, no rows will be highlighted if the user selects them or if they are
selected by calling the commands AL_SetLine or AL_SetSelect. Arealist Pro will still maintain a list of
the selected rows, even though they will not be highlighted. Thus the commands AL_GetClickedRow
or AL_GetSelect will still return the correct selected row(s). This parameter is especially useful if you
want to have a different way of showing selected rows such as by having a column of check marks

or bullets.

AL_SetRowOpts can be used in the On load phase or in another phase (form event).
Examples:

*Setup the list for single-row selection, allow the user to select no rows, don't allow the user to drag rows,
don't accept a drag from another Arealist Pro object, don't move the row style and color info with the
row, don't disable row highlighting

AL_SetRowOpts (elist;0;1;0,0;0,0)

“Setup the list for multi-rows selection, require one row selection, allow the user to option / alt-drag rows
only within the list, accept a drag from another Arealist Pro object, move the row style and color info
with the row, disable row highlighting

AL_SetRowOpts (elist;1,0;1;1;1;1)

“Setup the list for single-row selection, require one row selection, allow the user to drag rows within the list
and out of the list without the option / alt key, accept a drag from another Arealist Pro object, move
the row style and color info with the row, disable row highlighting

AL_SetRowOpts (elist;0;0;6;1;1;1)

AL_SetRowOpts 88

Configuring Arealist Pro Using Commands

AL _GetRowOpts

(areaRef:L; multiRows:|; allowNoSelection:|; dragRow:l; acceptDrag:l; moveWithData:l;
disableRowHighlight:1)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

+— multiRows integer Single or multiple rows selection

+ allowNoSelection string Allow no rows to be selected in single-row mode
+ dragRow integer Drag a row to this or another object

+ acceptDrag integer Accept drag from another ArealList Pro object

+— moveWithData integer Move row style and color with row

« disableRowHighlight integer Disable highlighting of selected rows

AL_GetRowOpts will return the current settings configured using AL_SetRowOpts. For complete details
about return values, please see the AL_SetRowOpts routine for possible configuration settings.

AL_SetColOpts

(areaRef:L; allowColumnResize:l; automaticResize:|; allowColumnLock:l; hideLastColumns:l;
displayPixelWidth:I; dragColumn:l; acceptDrag:l)

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout

— allowColumnResize integer User resizable columns

— automaticResize integer Automatically resize columns when events occur in the area
— allowColumnLock integer Allow user to lock columns

— hidelastColumns integer Number of columns from the right to hide

— displayPixelWidth integer Display column widths

— dragColumn integer Drag a column to this or another object

— acceptDrag integer Accept drag from another Arealist Pro object

AL_SetColOpts is used to control several ArealList Pro options pertaining to columns.

allowColumnResize — This parameter controls whether the user can resize column by clicking on the
dividing line between column headers:

0 — do not allow the user to resize columns

1 — allow the user to resize columns (default)

When the hideHeaders parameter of AL_SetMiscOpts is set to 1 (headers are hidden),
allowColumnResize is set to 0 internally by Arealist Pro.
AL_GetRowOpts - AL_SetColOpts 89

Configuring Arealist Pro Using Commands

The $2 event code returned to the callback method (or AL_GetLastEvent command, formerly ALProEvt
variable) will be set to -3 if the user resizes a column (see Determining the User’s Action on an Areal.ist
Pro Object). You can get the column widths using AL GetWidths.

automaticResize:
0 — No columns will be resized (default).

1 — Whenever an array or field command is called while the area is displayed, the columns
will be resized to the last widths passed using AL_SetWidths. If any column widths are O,
then ArealList Pro will automatically calculate the width based upon the contents of the
column.

allowColumnLock:

0 — disables the column lock area, which prevents the user from modifying the number
of locked columns

1 — enables the column lock area of the ArealList Pro object, allowing the user to modify
the number of locked columns (default)

The $2 event code returned to the callback method (or AL_GetLastEvent command, formerly ALProEvt
variable) will be set to -4 if the user changes the column lock position (see see Determining the User’s
Action on an Arealist Pro Object).

You can determine the current column lock position using AL_GetColLock.

hideLastColumns — This parameter specifies the number of columns from the right to not display:
0 — forces the display of all columns (default)
1 to (number of columns -1) — number of columns to hide

This parameter is used when an ID column is needed for SEARCH purposes after the list is displayed,
but you don’t want to clutter the display with the ID values. You would pass the ID array as the last array
to AL_SetArraysNam, and hide the last column using this parameter with a value of one. Any pre-sort
or user-sort will include the hidden column(s), to keep the values in all the columns “lined-up.”

If the number of columns passed to AreaList Pro is less than or equal to the value specified by
hideLastColumns, then only the first column will be displayed.

displayPixelWidth — Used during development to allow you to easily determine what pixel width
looks best for each column. Which this option is enabled, a button in the lower right area of the
Arealist Pro object is enabled to toggle the headers between displaying pixel widths and the actual
header values. When Arealist Pro is initially displayed, the column headers are shown. Click on the
button to toggle the headers to display the pixel width.

0 — turns the pixel width display off and disables the button (default)

1 — column headers display the width in pixels of each column, and are updated after the
user resizes the column

When pixel widths are displayed in the headers of the AreaList Pro area, the cursor will change to
display a pixel count when it is over the ArealList Pro area. If the cursor is moved over one of the rows
in the area and clicked, the count shown in the pointer will be updated.

This value is the necessary height of the ArealList Pro object to allow the row clicked on to be the bottom
one displayed. This feature is disabled whenever the column widths are not displayed. Please read the
section Column Widths for more information.

AL_SetColOpts 920

Configuring Arealist Pro Using Commands

dragColumn — This parameter controls if, and how, columns may be dragged. See Drag and Drop and

Dragging Commands.
0 — do not allow a column to be dragged (default)
1 — allow a column to be dragged within, but not out of the ArealList Pro object

2 — allow a column to be dragged out of, but not within the ArealList Pro object
3 — allow a column to be dragged both within and out of the ArealList Pro object

If the userSort option of AL_SetSortOpts is disabled, column dragging will begin immediately after the
user clicks in the column header, and an outline of the column will appear.

If user sorting is enabled, the drag begins when the pointer is moved 20 pixels outside of the column to
the left or right, or 30 pixels above or below the header area.

It is up to you to keep track of the new position of the columns: dragging the first column to the right
will cause the second column to become the first. Future calls to AreaList Pro code should take these
changes into account.

acceptDrag — This parameter controls whether columns may be dragged into the ArealList Pro object areaRef:
0 — this ArealList Pro object will not accept a column (default)
1 — this ArealList Pro object will accept a column dragged from another ArealList Pro object

AL_SetColOpts can be used in the On load phase or in another phase (form event).

Examples:

“Allow user to resize columns, don't resize columns while the area is displayed, allow column lock, hide
the last two columns, disable the pixel width display, don't allow or accept column dragging

AL SetColOpts (elist; 1;0;1,2;0;0,0)

‘Don't allow user to resize columns, resize columns while the area is displayed, allow column lock,
don't hide any columns, enable the pixel width display, don’t allow column dragging, but accept
dragged columns

AL_SetColOpts (elist;0;1;1,0;1;0;1)

AL_SetColOpts 91

Configuring Arealist Pro Using Commands

AL_GetColOpts

(areaRef:L; allowColumnResize:l; automaticResize:|; allowColumnLock:l; hideLastColumns:!;
displayPixelWidth:|; dragColumn:l; acceptDrag:|)

Parameter Type
— areaRef longint

+ dllowColumnResize integer

+ aufomaticResize integer
+ allowColumnLock integer
+ hidelastColumns integer
«— displayPixelWidth integer
« dragColumn integer
+ acceptDrag integer

Description

Reference of Arealist Pro object on layout

User resizable columns

Automatically resize columns when events occur in the area
Allow user to lock columns

Number of columns from the right to hide

Display column widths

Drag a column to this or another object

Accept drag from another ArealList Pro object

AL_GetColOpts will return the current settings configured using AL_SetColOpts. For complete details
about return values, please see the AL_SetColOpts routine for possible configuration settings.

AL_SetCellOpts

(areaRef:L; cellSelection:I; moveWithData:l; optimization:l)

Parameter Type

— areaRef longint
— cellSelection integer
— moveWithData integer
— optimization integer

Description

Reference of ArealList Pro object on layout
Cell selection mode

Move cell attributes with data

Optimize cell attribute allocation

AL_SetCellOpts is used to set options specific to cells.

cellSelection:

0 — row selection is enabled according to the multiRows option of AL _SetRowOpts (default)

1 — only one cell at a time may be selected (single cell selection)
2 — several cells may be selected, contiguous or discontiguous (multiple cells selection)

3 — row selection is enabled according to the multiRows option of AL_SetRowOpts and
the multiple rows keyboard scrolling is active as described below

AL_GetColOpts - AL_SetCellOpts 92

Configuring Arealist Pro Using Commands

Up/Down Arrow Keys
When Arealist Pro has been configured to allow multiple rows selection and the user presses the up or
down Arrow keys, the following conditions apply:

when the up Arrow key is pressed, the row prior to the first highlighted row will be selected
and will be the new active row

when the down Arrow key is pressed, the row after the last highlighted row will be selected
and will be the new active row

This interface is off by default (for backwards compatibility with previous versions) and may be activated
using the cellSelection parameter of AL_SetCellOpts.

The following parameter will activate the keyboard scrolling options when using the multi-rows
selection option:

AL _SetCellOpts (elist;3;...) “turn on enhanced Arrow key support

When cellSelection is set to a value other than 0, row dragging is disabled.

moveWithData — This parameter is used with various formatting commands such as
AL SetCellEnter, AL SetRowStyle, AL SetRowColor, AL SetRowRGBColor, AL SetCellStyle,
AL SetCellColor and AL SetCellRGBColor:

0 — cell attributes will not move

1 — cell attributes (not including cell selection) will move with the cell after sorting,
row dragging, or column dragging (default)

This parameter is ignored when displaying fields. See Drag and Drop and Dragging Commands
for more information.

optimization — The default is 1.

A value of T means that the block used to store the cell attributes (per row) is grown a small chunk at a
time. A value of 5 means that the block used to store the cell attributes is grown a large chunk at a time.
Thus a lower number means that setting cell attributes may be slower but will (potentially) require less
memory. Conversely, a higher number means that setting cell attributes may be faster but requires more
memory.

optimization should not be set above 1 unless the number of columns in the Arealist Pro object is
greater than 10 and a large percentage of the cells will have their cell attributes set.

Example:

AL_SetCellOpts (elist; 1;1;1) “single cell selection only, move data with cells, normal optimization

AL_SetCellOpts 93

Configuring Arealist Pro Using Commands

AL_GetCellOpts

(areaRef:L; cellSelection:l; moveWithData:l; optimization:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ cellSelection integer Cell selection mode

+ moveWithData integer Move cell attributes with data

+— optimization integer Optimize cell attribute allocation

AL_GetCellOpts will return the current values set by AL SetCellOpts (or default values if this routine
has not been called). For complete details about return values, please see the AL_SetCellOpts
routine for possible configuration settings.

AL Setinterface

(areaRef:L; appearance:L; sortindicator:L; useEllipsis:L; ignoreMenuMeta:L; clickDelay:L;
allowPartialRow:L; useOldPopup:L; entryControls:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

+— — appearance longint Column style

+ — sortindicator longint Sort Icon

+ — useEllipsis longint Use ellipsis

+ — ignoreMenuMeta longint Enable/disable meta characters in ArealList Pro enterable
popup controls

+— — clickDelay longint Click delay to initiate data entry

+ — allowPartialRow longint Allow partial rows to be displayed

+ — useOldPopup longint Use old date and time popups

+ — entryControls longint Use inline controls for date and time data entry

AL _SetInterface provides the ability to customize the default appearance settings of an ArealList Pro area.

In all parameters except areaRef, passing a value of -1 through a variable will return the current
setting («—) in this variable and do nothing to the appearance.

AL_GetCellOpts - AL_SetInterface 94

Configuring Arealist Pro Using Commands

If this routine is not called, ArealList Pro the following defaults will be used:

Parameter Value | Description

appearance 0 Appearance will use the default platform interface based on the current
client (machine) using ArealList Pro

sortIndicator 0 Sort Icon will appear in column header

useEllipsis 0 Ellipsis characters will not be used by default

ignoreMenuMeta 0 Meta characters enabled

clickDelay 60 | Arealist Pro will wait one second before automatically initiating data entry

allowPartialRow 0 Don't display partial row, area will be resized vertically to only show full rows

useOldPopup 0 Use new date and time popups

entryControls 0 Don't use inline controls for date and time data entry, use plain text instead

areaRef — Areal.ist Pro area reference (or -1 for global setting).

You can use this routine to provide global configuration for all Arealist Pro areas in your database by
passing an area reference of (-1) as the first parameter. This does not affect already created areas.

appearance — Instructs AreaList Pro to use the defined appearance setting, regardless of the current
OS platform.

Constant Value | Description
AL Default Interface 0 Default platform appearance
AL Platinium Interface 1 Platinum (Mac OS9) appearance

AL Force OSX Interface
AL Force XP Interface

Force Mac OSX appearance

Force Windows XP appearance

Nlw|N

AL Force Vista Interface Force Vista appearance

This parameter will be ignored if the useModernLook parameter of AL SetMiscOpts is set to a value of 0.

sortindicator — Determines the location of the sort icon:
0 — sort icon in header (OSX/XP only)
1 — sort icon above scrollbar

useEllipsis — Determines if auto-ellipsis is used:
0 — don't use ellipsis in header and column data
1 — use ellipsis in header and column data (in the center for right aligned text)
2 — use ellipsis in header and column data (on the left side for right aligned text)

AL_SetInterface 95

Configuring Arealist Pro Using Commands

The following example will force Windows XP, place the sort icon above the scrollbar and disable the ellipsis:
AL _Setinterface (elist;3;1;0)

If this routine were called on Mac OSX, the headers would have a WinXP interface. Conversely,
you could do the same thing (for Mac OSX appearance on Windows).

ignoreMenuMeta — Provides a global interface for disabling meta characters in AreaList Pro enterable
popup controls:

0 — meta characters enabled
1 — meta characters disabled

c|ickDe|ay — Provides the number of ticks (60 ticks = 1 second) which ArealList Pro will wait before
automatically initiating data entry (see AL SetEntryOpts and AL SetEnterable for additional options):

0 — inactive

-2 — use the system’s double click time
1 to 300 — number of ticks

allowPartialRow — Instructs Arealist Pro to display partial rows, thus causing ArealList Pro to draw in
the exact area rectangle defined in form:

0 — don't display partial row, area will be resized vertically to only show full rows (default)
1 — allow display of partial rows (area will not be resized)

useOldPopup — Instructs Arealist Pro to display the old style time and date popups or the new one
(see Data Entry Using Popups for more details):

0 — use new date and time popups
1 — use old date and time popups

entryControls — Determines if time and/or date data is entered as plain text or through inline controls
(see Data Entry Using Inline Controls for more details):

0 — use plain text for both times and dates

1 — use inline controls for times and plain text for dates
2 — use plain text for times and inline controls for dates
3 — use inline controls for both times and dates

The example below illustrates the combination of AL_SetInterface, AL SetMiscOpts and
AL GetMiscOpts.

AL_SetInterface 96

Configuring Arealist Pro Using Commands

Here is the On load phase of the elist AreaList Pro area’s object method:
$result:=AL_SetArraysNam (elist;1;3;"rConstant";"rValue";"rDescription")
AL SetHeaders (elist; 1;3;"Constant";"Value";"Description")
AL_SetFormat elist;2;"0";2;0,0;0)
AL SetScroll(elist;-3;-3) “no scrollbars

AL _GetMiscOpts (elist;0;vAreaSelected;"";0;cModern)
‘get default values (vAreaSelected=0 / cModern=1)

vAreaSelected:=2 ‘a 2-pixel wide border will be drawn around the plug-in area when it is selected
AL_SetMiscOpts (elist;0;vAreaSelected;"";0;cModern)

vAppearance:=-1 ‘get the default value
AL_Setinterface (elist,vAppearance;-1;-1;-1;-1;-1) “now vAppearance is set to default (0)

$result:=AL_SetEventCallback (elist;"mCallBack";2)

Our list displays the AL_SetInterface constants, row 1 being Default Interface (value 0). Thus the
constant value is the row number minus 1.

The mCallBack project method is as follows:
“Event Callback
vAppearance:=AL_GetlLine($1)-1 "get the row that was selected minus 1 = constant value

AL_Setinterface ($1;vAppearance;-1;-1;-1;-1;-1) “set the interface according to the selected
appearance, do nothing fo the other parameters

$0:=0 “return zero = do not execute object method and form method

Here is the result on Mac OSX with an interface set to XP, the areaSelected parameter of AL_SetMiscOpts
set to 2 and useModernLook to 1:

Constant Value | Description

AL Default Interface Default Platform Appearance

&L Platinium | nterface Platinum {Mac 059) Appearance
&L Force 0S5 Interface Force Mac 03 Appearance

&L Force xP Interface Force Windows XP &ppearance
&L Force Yista Interface Force ¥ista Appearance

Ju W2 — O

AL_SetInterface 97

Configuring Arealist Pro Using Commands

AL _SetMiscOpts

(areaRef:L; hideHeaders:|; areaSelected:|; postKey:S; showFooters:|; useModernLook:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— hideHeaders integer Hide the column headers

— areaSelected integer Visual cue that the plug-in area is selected
— postKey string String character to post to execute method
— showFooters integer Show the column footers

— useModernLook integer Modern or traditional appearance

AL_SetMiscOpts is used to control several Arealist Pro options.

hideHeaders:
0 — the column headers will be displayed (default)
1 — the column headers will not be displayed

When hideHeaders is 1, the allowColumnResize parameter of AL_SetColOpts is set to O internally by
Arealist Pro.

areaSelected — This parameter controls how the ArealList Pro object is displayed when it is “selected”
(i.e. the active layout object):

0 — no indication will be given to the user that the plug-in area is selected (default)

1 — a 2-pixel wide border will be drawn around the plug-in area when it is selected
2 — a selection rectangle will be drawn around the plug-in area when it is selected

3 — a 3D frame will be drawn around the object when it is selected

postKey — One character string. AreaList Pro causes the method of an AreaList Pro plug-in area
and the form method to run by posting a keyboard event to 4D’s event queue. This parameter is used
to specify what character to post. The default is the backslash character (“\”). Please read the section
Arealist Pro’s PostKey for more information. This can be ignored since 4D 2004.

showFooters — This parameter controls whether footers are displayed for the ArealList Pro object
areaRef. Footers are displayed using AL_SetFooters.

0 — footers will not be displayed (default)
1 — footers will be displayed below each column

See Footers, AL SetFooters and AL SetFtrStyle for more information about footers.

AL_SetMiscOpts 98

Configuring Arealist Pro Using Commands

useModernLook:
0 — the “traditional” look will be used
1 — a modern look will be used (default)

When useModernlook is set to a value of 1, the appearance of the ArealList Pro object will be set
according to the current OS, or to the appearance parameter of AL Setinterface.

AL_SetMiscOpts can be used in the On load phase or in another phase (form event).

Examples:

‘Don't hide the headers, show the area selected in 3D frame, use the default postKey, don't show footers,
use modern appearance

AL SetMiscOpts (elist;0;1;"";0;1)

‘Hide the headers, don’t show the area selected cue, use open bracket for the postKey, show footers,
use traditional appearance

AL _SetMiscOpts (elist; 1;0;"[";1,0)

See also the example provided for AL SetInterface to illustrate the combination of this command with
AL_SetMiscOpts and AL _GetMiscOpts.

AL _GetMiscOpts

(areaRef:L; hideHeaders:|; areaSelected:|; postKey:S; showFooters:|; useModernLook:|)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ hideHeaders integer Hide the column headers

+ areaSelected integer Visual cue that the plug-in area is selected
+ postKey string String character to post to execute method
+ showFooters integer Show the column footers

+ useModernLook integer Modern or traditional appearance

AL_GetMiscOpts will return the current settings configured using AL _SetMiscOpts. For complete details
about return values, see the AL_SetMiscOpts routine for possible configuration settings.

AL_SetMiscOpts - AL_GetMiscOpts 99

Configuring Arealist Pro Using Commands

AL _SetMiscColor

(areaRef:L; selector:l; alpColor:S; 4dColor:l)

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout
— selector integer Select which part to apply the color to

— alpColor string Color from ArealList Pro’s palette

— 4dColor integer Color from 4D’s palette

AL_SetMiscColor is used to set the color of miscellaneous parts of an AreaList Pro object.

Arealist Pro has its own palette, with the following colors: white, black, blue, green, yellow, magenta,
red, cyan, gray, light gray.

selector:

0 — The background color of the area in the header above the vertical scrollbar.
This area only exists if the header and the vertical scrollbar are shown.

1 — The background color of the area in the footer below the vertical scrollbar.
This area only exists if the footer and the vertical scrollbar are shown.

2 — The background color of the area to the left of the horizontal scrollbar.
This area only exists if the horizontal scrollbar is shown and at least
one column is locked.

3 — The background color of the area to the right of the horizontal scrollbar.
This area only exists if the horizontal scrollbar and the vertical scrollbar are shown.

alpColor — Name of the color in ArealList Pro’s palette. This will be the color for the part
specified by selector. If the name is not in ArealList Pro’s palette or it is a null (empty) string,
then 4dColor will be used.

4dColor — 1 to 256. The color at this position in 4D’s palette will be used for the color
for the part specified by selector.

Examples:

‘Light gray for the area in the header above the vertical scrollbar
AL_SetMiscColor (elist;0;"Light Gray";0)

*13th color from 4D’s palette for the area to the left of the horizontal scrollbar
AL SetMiscColor (elist;2;"";13)

AL_SetMiscColor 100

Configuring Arealist Pro Using Commands

AL SetMiscRGBColor

(areaRef:L; selector:L; red:L; green:L; blue:L)

Parameter Type

— areaRef longint
— selector longint
— red longint
— green longint
— blue longint

Description

Reference of Arealist Pro object on layout
Select which part to apply the color to
Red

Green

Blue

AL_SetMiscRGBColor provides the ability to define miscellaneous color attributes using the associated
RGB values. This routine is similar to AL_SetMiscColor.

red — Desired red component in RGB color pattern.

green — Desired green component in RGB color pattern.

blue — Desired blue component in RGB color pattern.

AL_SetCopyOpts

(areaRef:L; includeHiddenCols:|; fieldDelimiter:S; recordDelimiter:S; fieldWrapper:S)

Parameter Type
— areaRef longint
— includeHiddenCols integer
— fieldDelimiter string
— recordDelimiter string
— fieldWrapper string

Description

Reference of ArealList Pro object on layout
Include hidden columns

Field separator for Edit menu copy

Record separator for Edit menu copy

Field wrapper for Edit menu copy

AL_SetCopyOpts is used to control several ArealList Pro options pertaining to copying the selected
row(s) when “Copy” is selected from the Edit menu. Because of limitations of the clipboard, picture co-
lumns cannot be copied to the clipboard; a blank field will be copied instead.

For greater control over the Edit menu, you can use the AL SetEditMenuCallback interface.

AL_SetMiscRGBColor - AL_SetCopyOpts 101

Configuring Arealist Pro Using Commands

includeHiddenCols:
1 — any values in hidden columns will be included when the user uses the Edit menu Copy
command

0 — any values in hidden columns will not be included when the user uses the Edit menu
Copy command (default)

fieldDelimiter — One character string. The delimiter used to separate fields when the user copies
selected rows to the clipboard. Default is the tabulation character (ASCII 9).

recordDelimiter — One character string. The delimiter used to separate rows when the user
copies selected rows to the clipboard. Default is the carriage return character (ASCII 13).

fieldWrapper — One character string. The character used to “wrap” fields when the user

copies selected rows to the clipboard. This character will be placed both before and after each field.
If fieldWrapper is the null (empty) string, then no character will wrap the fields. The default is that no
character will wrap the fields.

fieldWrapper will be especially useful on Windows because programs such as Excel or Works expect
text to be pasted in with commas separating, and quotes wrapping the fields.

AL_SetCopyOpts can be used used in the On load phase or in another phase (form event).
Examples:

“Include hidden columns in Edit menu Copy, use the default Field and Record delimiters for Edit menu Copy
AL _SetCopyOpts (elist;1;"";""

‘Don't include hidden columns in Edit menu Copy, use different Field and Record delimiters for Edit menu Copy
AL_SetCopyOpits (clist;0;Char (241);Char (242))

AL_GetCopyOpts
(areaRef:L; includeHiddenCols:I; fieldDelimiter:S; recordDelimiter:S; fieldWrapper:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ includeHiddenCols integer Include hidden columns

+ fieldDelimiter string Field separator for Edit menu copy

+ recordDelimiter string Record separator for Edit menu copy

+ fieldWrapper string Field wrapper for Edit menu copy

AL_GetCopyOpts will return the current values as defined by AL SetCopyOpts.

AL_SetCopyOpts - AL_GetCopyOpts 102

Configuring Arealist Pro Using Commands

AL_SetSortOpts

(areaRef:L; automaticSort:l; userSort:l; allowSortEditor:|; sortEditorPrompt:S;

showSortOrder:|; showSortDirlndicator:)

Parameter Type

— areaRef longint
— automaticSort integer
— userSort integer
— allowSortEditor integer
— sortEditorPrompt string

— showSortOrder integer
— showSortDirlndicator integer

Description

Reference of Arealist Pro object on layout
Automatically sort

Allow user to sort

Allow user to sort with editor

Set the prompt of the Sort Editor

Show the current sort order in the Sort Editor

Show the current sort direction in upper right corner

AL_SetSortOpts is used to control several ArealList Pro options pertaining to sorting.

automaticSort:

1 — whenever an array or field command is called while the area is displayed, the columns
will be automatically sorted based upon the current sort order

0 — no sorting will be done automatically (default)

userSort:

0 — Disable the user sort buttons in the column headers.

1 — Enable the user sort buttons in the column headers (default). The sort buttons will
highlight when clicked, and the columns will be sorted based on the values in the
column which was clicked. The ArealList Pro event callback (or area/form method) will
run, with a $2 event code of -1 returned to the callback method (or AL _Getl astEvent
command, formerly ALProEvt variable).

2 — Bypass the user sort buttons in the column headers. The sort buttons will highlight when
clicked, but no sort will be performed. The AreaList Pro event callback (or area/form
method) will run, with a $2 event code of -1 returned to the callback method
(or AL_GetLastEvent command, formerly ALProEvt variable). This allows you to
procedurally check for a click of a sort button by the user and perform your own sort

action.

3 — Enable the user sort buttons for indexed fields only. If the field in the column is not
indexed, the sort button will highlight when clicked, but no sort will be performed.
If the field in the column is indexed, the fields will be sorted based on the values in the
column which was clicked. The ArealList Pro event callback (or area/form method) will
run, with a $2 event code of -1 returned to the callback method (or AL_GetlastEvent
command, formerly ALProEvt variable). If arrays, not fields, are displayed in the object then
all of the sort buttons will be enabled.

AL_SetSortOpts 103

Configuring Arealist Pro Using Commands

In the following situations, the column header will highlight, but no sort will occur, no event callback
method will be called and the method for the AreaList Pro area/form will not run:

if the value of userSort is 1, 2 or 3, and the column contains a picture column
if the value of userSort is 1 or 3, and the column contains a field from a related one table
If the value of userSort is 2, and the column contains a field from a related one table, the column

header will highlight, but no sort will occur, the event callback method will be called if defined,
and/or the method for the Arealist Pro area/form will run.

When the user sort is bypassed by setting userSort to 2, AL GetSort is still used to get the column header
that was clicked on.

allowSortEditor:
1 — the user can ctrl/command-click in the header to display the ArealList Pro Sort Editor
0 — the user is not able to display the Sort Editor (default)
If the value of allowSortEditor is 1, the following actions will trigger the display of the Arealist Pro Sort
Editor:
Windows ctrl-click
MacOS command-click

In addition, similar actions such as right-click or MacOS ctrl-click can trigger an event report without
displaying the ArealList Pro Sort Editor. See Ctrl/command-click in the Column Header Event.

The ArealList Pro Sort Editor can also be displayed with AL_ShowSortEd.

AL SetSortedCols provides the ability to customize the default list of sorted columns.

AL GetSortedCols returns the current sort columns as displayed in the Sort Editor.

sortEditorPrompt (optional) — This is the prompt that will be displayed at the top of the ArealList Pro
Sort Editor. The default is “Select columns to sort”.

The Sort Editor prompt can also be modified using AL SetSortEditorParams.

showSortOrder:

1 — the current sort order will be displayed in the sort order list whenever the ArealList Pro
Sort Editor is displayed

0 — the sort order list will be empty whenever the ArealList Pro Sort Editor is displayed
(default)

showSortDirlndicator:

1 — a sort direction indicator will be displayed in the upper right corner above the vertical
scrollbar

0 — no sort direction indicator will be displayed (default)

AL_SetSortOpts 104

Configuring Arealist Pro Using Commands

Displaying the sort indicator requires the header and the vertical scrollbar to be displayed. Please read
the section AL SetScroll for more information.

AL SetHeaderOptions provides the ability to customize the interface over the scrollbars (sort area).
You can customize the icon which is displayed using a “cicn” or “PICT” resource, or an item from
the 4D Picture Library.

When the user clicks the sort direction indicator, the sort direction of the primary sort level will be
reversed and the list will be re-sorted. The ArealList Pro event callback (or area/form method) will run,
with a $2 event code of -1 returned to the callback method (or AL _GetlLastEvent command, formerly
AlProEvt variable), the same as if a sort button in the header was clicked.

AL_SetSortOpts can be used in the On load phase or in another phase (form event).
Examples:

‘Don’t automatically sort, allow user to sort with buttons, allow user to invoke Sort Editor,
display the default Sort Editor prompt, don’t show the current sort order in the Sort Editor,
show the sort direction indicator

AL_SetSortOpts (elist;0;1;1;"";0;1)

‘Automatically sort, don't allow user to sort with buttons, allow user to invoke Sort Editor, change
the Sort Editor prompt, show the current sort order in the Sort Editor, don't show the sort direction indicator

AL _SetSortOpts (elist; 1,0;1;"People Sort Order";1,0)

AL SetSortEditorParams

(areaRef:L; windowTitle:S; prompt:S; labellist:X; columnNumberList:X) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— windowTitle string Window title

— prompt string Editor prompt

— labelList text array Sort column labels

— columnNumberList longint array Sort column numbers

+ resultCode longint Result code

AL_SetSortEditorParams provides the ability to customize the appearance of available sort items when
displaying the ArealList Pro Sort Editor.

windowTitle — Sets the Sort Editor window title (default “Sort Options”). Passing a null string (no value)
will tell AreaList Pro to use the default (or current) window title.

AL_SetSortOpts - AL_SetSortEditorParams 105

Configuring Arealist Pro Using Commands

prompt — Sets the Sort Editor dialog prompt (default “Select columns to sort”). Passing a null string
(no value) will tell AreaList Pro to use the default (or current) dialog prompt.

labellList — Sets the displayed names of the columns that will be available for sorting, which can be the
header names or customized labels.

columnNumberList — Set the column numbers that will be available for sorting. If not supplied, all
displayed columns will be used.

resultCode — Returns a valid Arealist Pro result code.

The following example will define the Sort Editor to display two columns (column 1 and 3)
in the Sort Editor, overriding the default settings. In addition, we’ll override the default Sort Editor
prompt, and use the default window title:

ARRAY TEXT (atCollist;2)

ARRAY LONGINT (aiCollist;2)

atColList{1}:="First"

atCollist{2}:="Third"

aiCollist{1}:=1 “first column

aiCollis{2}:=3 “third column

$ret:=AL_SetSortEditorParams (elist;"";"Select Column";atColList;aiColList)

AL GetSortEditorParams

(areaRef:L; windowTitle:S; prompt:S; headerlist:X; sortList:X) = resultCode:L

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout
+— windowTitle string Window title

+ prompt string Editor prompt

+ labellist text array Sort column labels

+ columnNumberlist longintarray Sort column numbers

+ resultCode longint Result code

AL_GetSortEditorParams provides the ability to retrieve the current properties of the AreaList Pro Sort
Editor. If you have not previously customized the display properties, the default settings will be returned.

See AL SetSortEditorParams for information on setting the Sort Editor attributes.

AL_SetSortEditorParams - AL_GetSortEditorParams 106

Configuring Arealist Pro Using Commands

The following example will assume you have not previously called the AL_SetSortEditorParams routine

and will return all the default settings:
C_TEXT (sAL_WindowTitle)
C_TEXT (sAL_SortEditorPrompt)
ARRAY TEXT (atAL_SortNames;0)
ARRAY LONGINT (aiAL_SortColumnOrder;0)

$ret:=AL_GetSortEditorParams (elist;sAL_WindowTitle;sAL_SortEditorPrompt;atAL_SortNames;
aiAL_SortColumnOrder;0)

AL SetSortedCols

(areaRef:L; sorilist:X) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— sortList longint array Sort column numbers

+ resultCode longint Result code

AL_SetSortedCols provides the ability to customize the default list of sorted columns.

If you don’t customize the sort list, the Sort Editor will use the current sort order by default and if you
have previously displayed the Sort Editor and defined more than one column, they will be displayed
when the Sort Editor is displayed again.

By default, the Sort Editor will always use what the user has selected in the sort column and previous
Sort Editor actions, unless you override the column list procedurally using AL_SetSortedCols.

sortList — A valid 4" Dimension longint array which will contain the column(s) you wish to display
in the sorted column list. If you define a column that is outside the displayed columns, nothing will
be displayed.

if you wish to have the column sorted in ascending order, pass a positive value

if you wish to have the column sorted in descending order, pass a negative value

resultCode — Returns a valid Arealist Pro result code.

The following example will configure the Sort Editor to display the third column (ascending) and fifth
column (descending) in the sorted list:

ARRAY LONGINT (aiAL_SortCols;2)

aiAL_SortCols{1}:=3 ‘include the 3rd column in sort list
aiAL_SortCols{2}:=-5 “include the 5th column in descending order
$ret:=AL_SetSortedCols (elist;aiAL_SortCols)

AL GetSortedCols returns the current sort columns as displayed in the Sort Editor.

AL_GetSortEditorParams - AL_SetSortedCols

107

Configuring Arealist Pro Using Commands

AL _SetForeColor

(areaRef:L; columnNumber:I; alpHdrForeColor:S; 4dHdrForeColor:l; alpListForeColor:S;
4dListForeColor:I; alpFtrForeColor:S; 4dFtrForeColor:)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— columnNumber integer Column number

— alpHdrForeColor string Header foreground color from Arealist Pro’s palette
— 4dHdrForeColor integer Header foreground color from 4D’s palette

— alpListForeColor string List foreground color from Arealist Pro’s palette

— 4dListForeColor integer List foreground color from 4D’s palette

— alpFtrForeColor string Footer foreground color from Arealist Pro’s palette
— AdFtrForeColor integer Footer foreground color from 4D’s palette

AL_SetForeColor is used to specify the foreground colors for a column header, a list area column,
and a column footer.

Arealist Pro has its own palette, with the following colors: white, black, blue, green, yellow, magenta,
red, cyan, gray, light gray.

columnNumber — The column for which to set the foreground color. Use a value of zero (0)
for columnNumber to apply the parameters to all columns.

alpHdrForeColor — Name of the color in ArealList Pro’s palette. This will be the foreground color for
the column header. If the name is not in ArealList Pro’s palette or it is a null string, then 4dHdrForeColor
will be used.

4dHdrForeColor — 1 to 256. The color at this position in 4D’s palette will be used for the
foreground color for the column header.

alpListForeColor — Name of the color in ArealList Pro’s palette. This will be the foreground color for
the column. If the name is not in ArealList Pro’s palette or it is a null string, then 4dListForeColor will be
used.

AdListForeColor — 1 to 256. The color at this position in 4D’s palette will be used for the foreground
color for the column.

alpFtrForeColor — Name of the color in Arealist Pro’s palette. If the name is not in ArealList Pro’s pa-
lette or it is a null string, then 4dFtrForeColor will be used.

AdFtrForeColor — 1 to 256. The color at this position in 4D’s palette will be used for the foreground
color for the column footer.

If AL_SetForeColor is not called, the default is black for the header, list, and footer foreground colors.

AL_SetForeColor 108

Configuring Arealist Pro Using Commands

AL_SetForeColor can be used in the On load phase or in another phase (form event).
Examples:

"Red for column header foreground, light gray for column foreground (all columns),
blue for footer foreground

AL _SetForeColor elist;0;"Red";0;"Light Gray";0;"Blue";0)

"Green for column header foreground, 13th color from 4D’s palette for column foreground (4th column),
7th color from 4D's palette for footer foreground

AL SetForeColor (elist;4;"Green";0;"";13;"";7)

AL _SetForeRGBColor

(areaRef:L; columnNumber:L; hdrForeRed:L; hdrForeGreen:L; hdrForeBlue:L; listForeRed:L;
listForeGreen:L; listForeBlue:L; firForeRed:L; ftrForeGreen:L; ftrForeBlue:L)

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout
— columnNumber longint Column number

— hdrForeRed longint Header foreground red
— hdrForeGreen longint Header foreground green
— hdrForeBlue longint Header foreground blue
— listForeRed longint List foreground red

— listForeGreen longint List foreground green

— listForeBlue longint List foreground blue

— ftrForeRed longint Footer foreground red

— ftrForeGreen longint Footer foreground green
— firForeBlue longint Footer foreground blue

AL_SetForeRGBColor is used to specify the foreground colors for a column header, a list area column,
and a column footer using the RGB values. This routine is similar to AL SetForeColor.

hdrForeRed — Desired header foreground red component in RGB color pattern.
hdrForeGreen — Desired header foreground green component in RGB color pattern.
hdrForeBlue — Desired header foreground blue component in RGB color pattern.
listForeRed — Desired list foreground red component in RGB color pattern.
listForeGreen — Desired list foreground green component in RGB color pattern.

listForeBlue — Desired list foreground blue component in RGB color pattern.

AL_SetForeColor - AL_SetForeRGBColor 109

Configuring Arealist Pro Using Commands

ftrForeRed — Desired footer foreground red component in RGB color pattern.
ftrForeGreen — Desired footer foreground green component in RGB color pattern.
ftrForeBlue — Desired footer foreground blue component in RGB color pattern.

The following example will tell AreaList Pro to draw the third column using a color scheme
standard for OSX:

AL _SetForeRGBColor (elist;3;237;254;243;237,;254,;243;237;254,;243)

AL SetBackColor

(areaRef:L; columnNumber:l; alpHdrBackColor:S; 4dHdrBackColor:I; alplListBackColor:S;
4dListBackColor:l; alpFtrBackColor:S; 4dFtrBackColor:l)

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout

— columnNumber integer Column number

— alpHdrBackColor string Header background color from Arealist Pro’s palette
— 4dHdrBackColor integer Header background color from 4D’s palette

— alpListBackColor string List background color from Arealist Pro’s palette

— 4dListBackColor integer List background color from 4D’s palette

— alpFtrBackColor string Footer background color from Arealist Pro’s palette
— AdFtrBackColor integer Footer background color from 4D’s palette

AL_SetBackColor is used to specify the background colors for a column in the header, list area,
and footer.

Arealist Pro has its own palette, with the following colors: white, black, blue, green, yellow, magenta,
red, cyan, gray, light gray.

columnNumber — The column for which to set the background color. Use a value of zero (0)
for columnNumber to apply the parameters to all columns.

alpHdrBackColor — Name of the color in AreaList Pro’s palette. This will be the background color for
the column header. If the name is not in ArealList Pro’s palette or it is a null string, then 4dHdrBackColor
will be used.

4dHdrBackColor — 1 to 256. The color at this position in 4D’s palette will be used for the
background color for the column header.

alpListBackColor — Name of the color in Arealist Pro’s palette. This will be the background color for
the column. If the name is not in Arealist Pro’s palette or it is a null string, then 4dListBackColor will be
used.

AL_SetForeRGBColor - AL_SetBackColor 110

Configuring Arealist Pro Using Commands

AdListBackColor — 1 to 256. The color at this position in 4D’s palette will be used for the background
color for the column.

alpFtrBackColor — Name of the color in ArealList Pro’s palette. This will be the background color for
the column footer. If the name is not in ArealList Pro’s palette or it is a null string, then 4dFtrBackColor
will be used.

AdFtrBackColor — 1 to 256. The color at this position in 4D’s palette will be used for the background
color for the column footer.

If AL_SetBackColor is not called, the default is white for the header, list, and footer background colors.
AL_SetBackColor can be used in the On load phase or in another phase (form event).
Examples:

“Light gray for header background, white for list background, all columns, gray for the footer background

AL_SetBackColor (elist;0;"Light Gray";0;"White";0;"Gray";0)

*"White for header background, 13th color from 4D's palette for list background, 1st column,
color 246 from 4D's palette for footer background

AL SetBackColor (elist; 1;"White";0;"";13;"":246)

AL _SetBackRGBColor

(areaRef:L; columnNumber:L; hdrBackRed:L; hdrBackGreen:L; hdrBackBlue:L; listBackRed:L;
listBackGreen:L; listBackBlue:L; firBackRed:L; firBackGreen:L; firBackBlue:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber longint Column number
— hdrBackRed longint Header back red
— hdrBackGreen longint Header back green
— hdrBackBlue longint Header back blue
— listBackRed longint List back red

— listBackGreen longint List back green

— listBackBlue longint List back blue

— ftrBackRed longint Footer back red

— ftrBackGreen longint Footer back green
— ftrBackBlue longint Footer back blue

AL_SetBackColor - AL_SetBackRGBColor 111

Configuring Arealist Pro Using Commands

AL_SetBackRGBColor is used to specify the background colors for a column header, a list area column,
and a column footer using the RGB values. This routine is similar to AL_SetBackColor.

hdrBackRed — Desired header background red component in RGB color pattern.
hdrBackGreen — Desired header background green component in RGB color pattern.
hdrBackBlue — Desired header background blue component in RGB color pattern.
listBackRed — Desired list background red component in RGB color pattern.
listBackGreen — Desired list background green component in RGB color pattern.
listBackBlue — Desired list background blue component in RGB color pattern.
ftrBackRed — Desired footer background red component in RGB color pattern.
ftrBackGreen — Desired footer background green component in RGB color pattern.

ftrBackBlue — Desired footer background blue component in RGB color pattern.

The following example will tell AreaList Pro to draw the third column using a color scheme standard for OSX:
AL SetBackRGBColor (elist;3;237;254,243,237,254;243;237,;254,243)

AL _SetDividers

(areaRef:L; colDividerPattern:S; alpColDividerColor:S; 4dColDividerColor:I;
rowDividerPattern:S; alpRowDividerColor:S; 4dRowDividerColor:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— colDividerPattern string Pattern of the column divider

— alpColDividerColor string Color from ArealList Pro’s palette for the column divider
— 4dColDividerColor integer Color from 4D’s palette for the column divider

— rowDividerPattern string Pattern of the row divider

— alpRowDividerColor string Color from Arealist Pro’s palette for the row divider

— 4dRowDividerColor integer Color from 4D’s palette for the row divider

AL_SetDividers is used to set the pattern and color of the column and row dividers.

These are the available patterns: white, black, gray, light gray, and dark gray.

Arealist Pro has its own palette, with the following colors: white, black, blue, green, yellow, magenta,
red, cyan, gray, light gray.

AL_SetBackRGBColor - AL_SetDividers 112

Configuring Arealist Pro Using Commands

colDividerPattern — Name of the pattern for the column divider. If a null string is used then
no column divider will be displayed.

alpColDividerColor — Name of the color in Arealist Pro’s palette. This will be the color for the
column divider. If the name is not in ArealList Pro’s palette or it is a null string, then 4dColDividerColor
will be used.

4dColDividerColor — 1 to 256. The color at this position in 4D’s palette will be used for the
column divider.

rowDividerPattern — Name of the pattern for the row divider. If a null string is used then no row
divider will be displayed.

alpRowDividerColor — Name of the color in ArealList Pro’s palette. This will be the color for the row
divider. If the name is not in ArealList Pro’s palette or it is a null string, then 4dRowDividerColor will be
used.

4dRowDividerColor — 1 to 256. The color at this position in 4D’s palette will be used for the row
divider.

If neither AL_SetDividers nor AL_SetRGBDividers are called, then no column or row dividers will be
displayed.

AL_SetDividers can be used in the On load phase or in another phase (form event).

Examples:

"Display solid gray column dividers and no row dividers
AL SetDividers (elist;"Black";"Gray";0;"";"";0)

"Display column and row dividers in a gray pattern

AL SetDividers (elist;"Gray";"Black";0;"Gray";"Black";0)

AL_SetDividers 113

Configuring Arealist Pro Using Commands

AL SetCellBorder

(areaRef:L; cellColumn:l; cellRow:L; borderleft:I; borderTop:l; borderRight:I; borderBottom:|;
offset:I; width:F; redColor:l; greenColor:I; blueColor:I)

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout
— cellColumn integer Column

— cellRow longint Row

— borderLeft integer Draw left border

— borderTop integer Draw top border

— borderRight integer Draw right border

— borderBottom integer Draw bottom border

— offset integer Offset from cell boundary in pixels
— width real Width of line

— redColor integer Red

— greenColor integer Green

— blueColor integer Blue

AL_SetCellBorder provides the ability to set the border style and RGB color for a cell.

cellColumn — Column of cell where border will be applied.

cellRow — Row of cell where border will be applied.

borderlLeft — Draw left border.

borderTop — Draw top border.

borderRight — Draw right border.

borderBottom — Draw bottom border.

offset — Offset from cell boundary in pixels. 0 if the border should be drawn at cell boundary (default).

width — Width of line. Although this parameter is a real value, only integer widths will be drawn.
Fractional widths (like 0.25 pixels) are used for compatibility with PrintList Pro’s harline printing features.

redColor — RGB red component used for the border.
greenColor — RGB green component used for the border.

blueColor — RGB blue component used for the border.

AL_SetCellBorder 114

Configuring Arealist Pro Using Commands

AL SetCellFrame

(areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; offset:I; width:F;
redLightColor:|; greenLightColor:l; bluelightColor:I; redDarkColor:|; greenDarkColor:I;
blueDarkColor:l; clearAllBorders:|)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— firstCellCol integer First cell column

— firstCellRow longint First cell row

— |astCellCol integer Last cell column

— lastCellRow longint Last cell row

— offset integer Offset from cell boundary in pixels
— width real Width of line

— redLightColor integer Red (light color)

— greenlightColor integer Green (light color)

— bluelightColor integer Blue (light color)

— redDarkColor integer Red (dark color)

— greenDarkColor integer Green (dark color)

— blueDarkColor integer Blue (dark color)

— clearAllBorders integer Clear all borders within the frame

AL_SetCellFrame draws a frame around a range of cells. It uses RGB colors: light color for both left and
top lines, dark color for both right and bottom line.

The range of cells from [firstCellCol, firstCellRow] to [lastCellCol, lastCellRow] will be set.
offset — Offset from cell boundaries in pixels. 0 if the frame should be drawn at cell boundaries (default).

width — Width of line. Although this parameter is a real value, only integer widths will be drawn.
Future versions may allow fractional widths.

redLightColor, greenLightColor, bluelightColor — RGB components used for both left and top
lines colors.

redDarkColor, greenDarkColor, blueDarkColor — RGB components used for both right and
bottom lines colors.

clearAllBorders — It this parameter value is 1, then all cells inside the frame will have their borders
removed.

AL_SetCellFrame 115

Configuring Arealist Pro Using Commands

AL SetRGBDividers

(areaRef:L; colDividerPattern:S; colDividerRed:L; colDividerGreen:L; colDividerBlue:L;
rowDividerPattern:S; rowDividerRed:L; rowDividerGreen:L; rowDividerBlue:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— colDividerPattern string Column divider pattern string

— colDividerRed longint Column divider — Red

— colDividerGreen longint Column divider — Green

— colDividerBlue longint Column divider — Blue

— rowDividerPattern string Row divider pattern string

— rowDividerRed longint Row divider — Red

— rowDividerGreen longint Row divider — Green

— rowDividerBlue longint Row divider — Blue

AL_SetRGBDividers functions the same as the AL_SetDividers routine, except that the column
and row divider colors use standard RGB values.

If neither AL_SetDividers nor AL_SetRGBDividers are called, then no column or row dividers will be
displayed.

colDividerPattern — String, name of the pattern for the column divider. If a null string is used then
no column divider will be displayed.

colDividerRed — Column divider RGB red component.
colDividerGreen — Column divider RGB green component.
colDividerBlue — Column divider RGB blue component.

rowDividerPattern — String, name of the pattern for the row divider. If a null string is used then
no row divider will be displayed.

rowDividerRed — Row divider RGB red component.
rowDividerGreen — Row divider RGB green component.

rowDividerBlue — Row divider RGB blue component.

The following example will set the column/row dividers using the AL_SetRGBDividers routine:

‘Display column and row dividers in a gray pattern
AL_SetRGBDividers (elist;"Gray";209; 209; 209;"Gray"; 209; 209; 209)

AL_SetRGBDividers 116

Configuring Arealist Pro Using Commands

AL SetRowStyle

(areaRef:L; rowNumber:L; styleNum:|; fontName:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— rowNumber longint Number of row

— styleNum integer Style of the font

— fontName string Name of the font

AL_SetRowStyle is used to set the type style and font for a particular row. It will override the style
and font settings for all columns in that row. The size settings of each column will still apply.

rowNumber — The row for which to set the style. Use a value of zero (0) for rowNumber to apply
the parameters to all rows.

styleNum — This parameter is used to set the style for the row. The different values in the table below
can be added together to produce combinations of styles. For example, bold italic has a value of 3.

Style Number
Plain 0
Bold 1
Italic 2
Underline 4
Outline 8
Shadow 16
Condensed 32
Extended 64

If a row style has been previously set, it may be removed by setting styleNum to -1. This may also be
applied to all rows by passing a zero (0) for the row number. This will have no effect on rows that have
not been previously set.

The row style may be left unchanged by setting styleNum to 256.

fontName — This parameter specifies the font for a row. If a row font has been previously set, it may
be removed by setting fontName to “1”. Note that the value is a string, not a number. This may also be
applied to all rows by passing a zero (0) for the row number. This will have no effect on rows that have
not been previously set.

The row font may be left unchanged by setting fontName to the empty string ("").

See the moveWithData option of AL_SetRowOpts. This controls whether row styles stay with their rows
whenever sorting or dragging occurs.

AL_SetRowStyle 117

Configuring Arealist Pro Using Commands

Examples:
AL _SetRowsStyle (elist;10;2;"") “set row 10 to be italic
AL _SetRowsStyle (elist;0;1;"Helvetica") “set all rows to be bold, Helvetica
AL _SetRowsStyle (elist;0;-1;"-1") “reset all row styles: column settings will be used
*Set the 12th row to display the Times font in bold italic style
AL _SetRowsStyle (elist;12;3;"Times")
AL_UpdateArrays elist;-1)

AL _SetRowColor

(areaRef:L; rowNumber:L; alpRowForeColor:S; 4dRowForeColor:L; alpRowBackColor:S;
A4dRowBackColor:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— rowNumber longint Number of row

— alpRowForeColor string Row foreground color from Arealist Pro’s palette
— 4dRowForeColor longint Row foreground color from 4D’s palette

— alpRowBackColor string Row background color from Arealist Pro’s palette
— 4dRowBackColor longint Row background color from 4D’s palette

AL_SetRowColor is used to specify the foreground and background colors for a row. It will override the
foreground and background color settings for all columns in that row.

ArealList Pro has its own palette, with the following colors: white, black, blue, green, yellow, magenta,
red, cyan, gray, light gray.

rowNumber — The row for which to set the foreground color. Use a value of zero (0) for rowNumber
to apply the parameters to all rows.

alpRowForeColor — Name of the color in Arealist Pro’s palette. This will be the foreground color for
the row. If the name is not in Arealist Pro’s palette or it is a null string, then 4dRowForeColor will be used.

4dRowForeColor — 1 to 256. Foreground color number for the row (from 4D’s palette). If a row color
has been previously set, it may be removed by setting alpRowForeColor to an empty string (""), and
4dRowForeColor to -1. This may also be applied to all rows by passing a zero (0) for the rowNumber.
This will have no effect on rows that have not been previously set.

The row foreground color may be left unchanged by setting alpRowForeColor to the empty string (""),
and 4dRowForeColor to 0.

alpRowBackColor — Name of the color in Areal ist Pro’s palette. This will be the background color for the
row. If the name is not in AreaList Pro’s palette or it is the empty string ""), then 4dRowBackColor will be used.

AL_SetRowStyle - AL_SetRowColor 118

Configuring Arealist Pro Using Commands

4dRowBackColor —1 to 256. Background color number for the row (from 4D’s palette).

If a row background color has been previously set, it may be removed by setting alpRowBackColor
to the empty string (""), and 4dRowBackColor to -1. This may also be applied to all rows by passing a
zero (0) for the row number. This will have no effect on rows that have not been previously set.

The row background color may be left unchanged by setting alpRowBackColor to the empty string (""),

and 4dRowBackColor to 0.

See the moveWithData option of AL_SetRowOpts. This controls whether row colors stay with their rows

whenever sorting or dragging occurs.

Examples:

AL_SetRowColor (clist; 10;"Blue";0;"Light gray";0) “set row 10 to foreground blue,

background light gray

AL_SetRowColor (elist;0;"Blue";0;"Yellow";0) “set all rows to blue foreground, yellow background

AL _SetRowColor (elist;0;"";-1;"";-1) “reset all row colors to use the column color settings
AL_SetRowColor (elist;10;"Blue";0;"Light Gray";0) set the 10th row to display a foreground color of

blue and background color of light gray

AL _SetRowColor (elist;12;"Green";0;"";0) “set the 12th row to display a foreground color

of green and the current background color

AL_UpdateArrays elist;-1)

AL SetRowRGBColor

(areaRef:L; rowNumber:L; rowForeRed:L; rowForeGreen:L; rowForeBlue:L; rowBackRed:L;

rowBackGreen:L; rowBackBlue:L)

Parameter Type

— areaRef longint
— rowNumber longint
— rowForeRed longint
— rowForeGreen longint
— rowForeBlue longint
— rowBackRed longint
— rowBackGreen longint
— rowBackBlue longint

Description

Reference of Arealist Pro object on layout
Row number

Foreground red

Foreground green

Foreground blue

Background red

Background green

Background blue

AL_SetRowRGBColor provides the ability to set the foreground and background colors for an individual
row using standard RGB colors (see AL _SetAltRowColor).

This routine is similar to AL_SetRowColor, except that it uses RGB color values.

AL_SetRowColor - AL_SetRowRGBColor 119

Configuring Arealist Pro Using Commands

rowForeRed — Desired foreground red component in RGB color pattern.
rowForeGreen — Desired foreground green component in RGB color pattern.
rowForeBlue — Desired foreground blue component in RGB color pattern.
rowBackRed — Desired background red component in RGB color pattern.
rowBackGreen — Desired background green component in RGB color pattern.

rowBackBlue — Desired background blue component in RGB color pattern.

The following example will tell AreaList Pro to draw the third row using a color scheme standard for OSX:
AL _SetRowRGBColor (elist;3;237:0,243;0,254;,0)

AL _SetAltRowColor

(areaRef:L; red:L; green:L; blue:L; options:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— red longint Red

— green longint Green

— blue longint Blue

— options longint Options

AL_SetAltRowColor provides the ability to set the alternate background row colors for an AreaList Pro
area. The colors are defined using a standard RGB pattern and can optionally be configured to display
the alternate row color in blank rows to fill the entire area with a consistent interface.

You may optionally display the alternate background row color for odd and/or even rows, including
empty rows (those below the last row).

red — Desired red component in RGB color pattern.
green — Desired green component in RGB color pattern.
blue — Desired blue component in RGB color pattern.

options — Additionally formatting options (bitwise operator):
1 — display alternate background color in odd rows
2 — display alternate background color in even rows

AL_SetRowRGBColor - AL_SetAltRowColor 120

Configuring Arealist Pro Using Commands

The following example will tell AreaList Pro to draw the alternate rows using a color scheme
standard for OSX:

AL SetAltRowColor (elist;237;243;254;1)

This example will set the background color for odd rows to grey:
AL_SetAltRowColor elist;209;209;209;1)

This example will set the background color for even rows to grey:
AL _SetAltRowColor (elist;209;209;209;2)

This example will set the background color for odd rows to white:
AL SetAltRowColor (elist;255;255;255;1)

AL_SetAltRowClir
(areaRef:L; alpRowBackColor:S; 4dRowBackColor:I; options:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— alpRowBackColor string Alternate row background color from Arealist Pro’s palette
— 4dRowBackColor integer Alternate row background color from 4D’s palette

— options longint Options

AL_SetAltRowClr performs the same action as AL _SetAltRowColor, except it uses the standard AreaL.ist
Pro color formatting parameters as routines such as AL_SetRowColor.

Arealist Pro has its own palette, with the following colors: white, black, blue, green, yellow, magenta,
red, cyan, gray, light gray.

alpRowBackColor — Name of the color in Arealist Pro’s palette. This will be the alternate row

background color. If the name is not in ArealList Pro’s palette or it is the empty string (""), then
4dRowBackColor will be used.

4dRowBackColor — 1 to 256. Alternate row background color from 4D’s palette.

options — Additionally formatting options (bitwise operator):
1 — display alternate background color in odd rows
2 — display alternate background color in even rows

AL_SetAltRowColor - AL_SetAltRowClr 121

Configuring Arealist Pro Using Commands

AL_SetCellStyle

(areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:I; lastCellRow:L; cellArray:X; styleNum:l;
fontName:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— firstCellCol integer First cell column

— firstCellRow longint First cell row

— lastCellCol integer Last cell column

— lastCellRow longint Last cell row

— cellArray two-dimensional longint array ~ Discontiguous cells

— styleNum integer Style of the font

— fontName string Name of the font

AL_SetCellStyle is used to set the font and/or style of a specific cell, range of cells, or list of cells.

To specify a single cell. If firstCellCol and firstCellRow are greater than 0 and lastCellCol
or lastCellRow are less than or equal to 0 then only [firstCellCol, firstCellRow] will be set.

To specify a range of cells. If firstCellCol and firstCellRow are greater than 0 and lastCellCol
and lastCellRow are greater than 0 then the range of cells from [firstCellCol, firstCellRow]
to [lastCellCol, lastCellRow] will be set.

To specify discontiguous cells. If firstCellCol or firstCellRow are less than or equal to 0 then
the cells in cellArray will be set.

cell Array — Two-dimensional long integer array. The first dimension must be two. The first array is
for the column indices and the second array is for the row indices. The second dimension must be the
same as the number of cells that are to be selected. See the following illustration.

cellArray
lo]1]2]
vy ¥

0 0

Cell 11 1
CeI||2 2 2

1
Celln|n n
Column Row

AL_SetCellStyle 122

Configuring Arealist Pro Using Commands

styleNum —This parameter is used to set the style for the specified cells. The values shown below
can be added together to combine styles.

Style Number
Plain 0
Bold 1
Italic 2
Underline 4
Outline 8
Shadow 16
Condensed 32
Extended 64

If a cell style has been previously set, the style may be removed by setting styleNum to -1. The cell style

may be left unchanged by setting styleNum to 256.

fontName — If a cell font has been previously set, it may be removed by setting fontName to
Note that the value is a string, not a number. The cell font may be left unchanged by setting fontName

to the empty string ("").

See the moveWithData option of AL SetCellsOpts. This controls whether cell styles and fonts stay with
their cells whenever sorting, row dragging, or column dragging occurs.

Example:

“Set the currently highlighted cell(s) to be bold
ARRAY LONGINT (aCellArray;2;0)
$Result:=AL_GetCellSel (elist;vCol 1 ;vRow 1;vCol2;vRow?2;aCellArray)

If ($Result=1)

AL_SetCellStyle (elist;vCol1;vRow 1,vCol2;vRow?2;aCellArray;1;"")
AL _UpdateArrays (elist;-1)

End if

AL_SetCellStyle

/I_’I "

123

Configuring Arealist Pro Using Commands

AL_GetCellStyle

(areaRef:L; cellColumn:l; cellRow:L; styleNum:l; fontName:S)

Parameter

— areaRef
— cellColumn
— cellRow
«— styleNum

«— fontName

Type

longint
integer
longint
integer

string

Description

Reference of Arealist Pro object on layout
Cell column

Cell row

Style of the font

Name of the font

AL_GetCellStyle is used to get the font and/or style of a particular cell. It will not get the column
or row font and/or style.

cellColumn — Column of cell where to get the style.

cellRow — Row of cell where to get the style.

styleNum — This parameter returns the style number for the cell. The number can be a sum of several
individual styles. For example, bold italic has a value of 3.

Style Number
Plain 0
Bold 1
Italic 2
Underline 4
Outline 8
Shadow 16
Condensed 32
Extended 64

If a cell style has not been previously set, the value of styleNum will be -1.

fontName — If a cell font has not been previously set, the value of fontName will be
Note that the value is a string, not a number.

Example:

//_’l "

"Get the style of the cell in the third column, first row

AL _GetCellStyle (elist;3;1;vStyle;vFont)

AL_GetCellStyle 124

Configuring Arealist Pro Using Commands

AL _SetCelliColor

(areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X;
alpForeColor:S; 4dForeColor:l; alpBackColor:S; 4dBackColor:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— firstCellCol integer First cell column

— firstCellRow longint First cell row

— lastCellCol integer Last cell column

— lastCellRow longint Last cell row

— cellArray two-dimensional longint array ~ Discontiguous cells

— alpForeColor string Foreground color from Arealist Pro’s palette
— 4dForeColor integer Foreground color from 4D’s palette

— alpBackColor string Background color from ArealList Pro’s palette
— 4dBackColor integer Background color from 4D’s palette

AL_SetCellColor is used to set the foreground color and/or background color of a specific cell,
range of cells, or list of cells.

To specify a single cell. If firstCellCol and firstCellRow are greater than 0 and lastCellCol
or lastCellRow are less than or equal to 0 then only [firstCellCol, firstCellRow] will be set.

To specify a range of cells. If firstCellCol and firstCellRow are greater than 0 and lastCellCol
and lastCellRow are greater than 0 then the range of cells from [firstCellCol, firstCellRow]
to [lastCellCol, lastCellRow] will be set.

To specify discontiguous cells. If firstCellCol or firstCellRow are less than or equal to 0 then
the cells in cellArray will be set.

Arealist Pro has its own palette, with the following colors: white, black, blue, green, yellow, magenta,
red, cyan, gray, light gray.

cellArray — Two-dimensional long integer array. The first dimension must be two. The first array is for
the column indices and the second array is for the row indices. The second dimension must be the same
as the number of cells that are to be selected. See the following illustration.

cellArray
ol1[7]
v v

0 0
Cell1]1 1
CeI||2 2 2
Cellln n n

Column Row

AL_SetCellColor 125

Configuring Arealist Pro Using Commands

alpForeColor — Name of the color in Arealist Pro’s palette. This will be the foreground color for the
cell. If the name is not in ArealList Pro’s palette or it is the empty string (""), then 4dForeColor will be
used.

4dForeColor — 1 to 256. Foreground color number for the cell (from 4D’s palette). If a cell foreground
color has been previously set, it may be removed by setting alpForeColor to the empty string (""), and
4dForeColor to 1. The cell foreground color may be left unchanged by setting alpForeColor to the empty
string (""), and 4dForeColor to 0.

alpBackColor — Name of the color in ArealList Pro’s palette. This will be the background color for the
cell. If the name is not in ArealList Pro’s palette or it is the empty string (""), then 4dBackColor will be used.

4dBackColor — 1 to 256. Background color number for the cell (from 4D’s palette).

If a cell background color has been previously set, it may be removed by setting alpBackColor to the
empty string (""), and 4dBackColor to 1. The cell background color may be left unchanged by setting
alpBackColor to the empty string (""), and 4dBackColor to 0.

The foreground and background colors for a cell may be set differently during data entry by calling
AL_SetCellColor in the entry started callback method and again in the entry finished callback method
to restore the colors.

See the moveWithData option of AL SetCellsOpts. This controls whether cell foreground
and background colors stay with their cells whenever sorting, row dragging, or column
dragging occurs.

Example:

“Set all negative values in the third column, a real array, to have a foreground color of red
ARRAY LONGINT (aCellArray;2;0) *"MUST initialize a two-dimensional long integer array
For($i;1;Size of array (aRevenue)) “check each element in the array

If (aRevenue{$i}<0) “is the value in this element negative?

AL_SetCellColor (elist;3;$i:0;0;aCellArray;"Red";0;"";0) "if so, then show it in red

End if
End for
AL_UpdateArrays elist;-1)

AL_SetCellColor 126

Configuring Arealist Pro Using Commands

AL GetCellColor

(areaRef:L; cellColumn:l; cellRow:L; 4dForeColor:l; 4dBackColor:l)

Parameter Type

— areaRef longint
— cellColumn integer
— cellRow longint
+ 4dForeColor integer
+ 4dBackColor integer

Description

Reference of Arealist Pro object on layout
Cell column

Cell row

Foreground color from 4D’s palette

Background color from 4D’s palette

AL_GetCellColor is used to get the foreground color and/or background color of a specific cell.
It will not get the column or row foreground color and/or background color.

For this command to function correctly the cell foreground and background colors must have been
set from 4D’s palette. In other words, the 4dForeColor and 4dBackColor parameters must have been

used in the command AL SetCellColor.

cellColumn — Column of cell where to get the color.

cellRow — Row of cell where to get the color.

4dForeColor — 1 to 256. Foreground color number for the cell (from 4D’s palette).
If a cell foreground color has not been previously set, the value of 4dForeColor will be -1.

4dBackColor — 1 to 256. Background color number for the cell (from 4D’s palette).
If a cell background color has not been previously set, the value of 4dBackColor will be -1.

AL_GetCellColor

127

Configuring Arealist Pro Using Commands

AL _SetCellRGBColor

(areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X;
cellForeRed:L; cellForeGreen:L; cellForeBlue:L; cellBackRed:L; cellBackGreen:L;

cellBackBlue:L)

Parameter

— areaRef

— firstCellCol

— firstCellRow
— |astCellCol

— lastCellRow
— cellArray

— cellForeRed
— cellForeGreen
— cellForeBlue
— cellBackRed
— cellBackGreen
— cellBackBlue

Type
longint
integer
longint
integer
longint
two-dimensional longint array
longint
longint
longint
longint
longint

longint

Description

Reference of ArealList Pro object on layout

First cell column
First cell row

Last cell column
Last cell row
Discontiguous cells
Foreground red
Foreground green
Foreground blue
Background red
Background green

Background blue

AL_SetCellRGBColor is used to set the foreground and/or background color of a specific cell,
range of cells, or list of cells. This routine works in the same manner as AL _SetCellColor,
except it allows you to specify the colors using standard RGB values.

cellForeRed — Desired foreground red component in RGB color pattern.

cellForeGreen — Desired foreground green component in RGB color pattern.

cellForeBlue — Desired foreground blue component in RGB color pattern.

cellBackRed — Desired background red component in RGB color pattern.

cellBackGreen — Desired background green component in RGB color pattern.

cellBackBlue — Desired background blue component in RGB color pattern.

AL_SetCellRGBColor

128

Configuring Arealist Pro Using Commands

AL GetCellRGBColor

(areaRef:L; cellColumn:l; cellRow:L; cellForeRed:L; cellForeGreen:L; cellForeBlue:L; cellBackRed:L;

cellBackGreen:L; cellBackBlue:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— cellColumn integer Cell column

— cellRow longint Cell row

+ cellForeRed longint Foreground red

+ cellForeGreen longint Foreground green

+ cellForeBlue longint Foreground blue

+ cellBackRed longint Background red

+ cellBackGreen longint Background green

+ cellBackBlue longint Background blue

AL_GetCellRGBColor is used to get the foreground and/or background color of a specific cell.

This routine works in the same manner as AL_GetCellColor, except it allows you to get the color
information using standard RGB values.

See AL SetCellRGBColor for details about the parameters.

AL_SetCelilSel
(areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:I; lastCellRow:L; cellArray:X)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— firstCellCol integer First cell column

— firstCellRow longint First cell row

— lastCellCol integer Last cell column

— lastCellRow longint Last cell row

— cellArray two-dimensional longint array ~ Discontiguous cells

AL _SetCellSel is used to set the cell selection.

Use the cellSelection option of AL_SetCellOpts to specify a cell selection mode prior to using this
command.

AL_GetCelRGBColor - AL_SetCellSel 129

Configuring Arealist Pro Using Commands

To select a single cell. If firstCellCol and firstCellRow are greater than 0 and lastCellCol
or lastCellRow are less than or equal to 0 then only [firstCellCol, firstCellRow] will be selected.

To select a range of cells. If firstCellCol and firstCellRow are greater than 0 and lastCellCol
and lastCellRow are greater than 0 then the range of cells from [firstCellCol, firstCellRow]
to [lastCellCol, lastCellRow] will be selected.

To select discontiguous cells. If firstCellCol or firstCellRow are less than or equal to 0 then the
cells in cellArray will be selected.

cell Array — Two-dimensional long integer array. The first dimension must be two. The first array is
for the column indices and the second array is for the row indices. The second dimension must be the

same as the number of cells that are to be selected. See the following illustration.
cellArray
Lo[1]2]
v ¥
0 0
Cell 11 1
Cell 2| 2 2
Celln|n n
Column ~ Row

Examples:

AL G

AL SetCellSel (elist; 1;3;0,0) “select cell at column 1, row 3
AL SetCellSel (elist;2;2;5;5) “select cells from column 2, row 2 to column 5, row 5

ARRAY LONGINT (aCellSelect;2;4)
aCellSelect{1}{1}:=1 “column 1

aCellSelect{2}{1}:=1 “row 1
aCellSelect{1}{2}:=1 *column 1
aCellSelect{2}{2}:=2 “row 2
aCellSelect{1}{3}:=2 “column 2
aCellSelect{2}{3}:=5 ‘row 5
aCellSelect{1}{4}:=2 “column 2

aCellSelect{2}{4}:=6 ‘row 6
AL SetCellSel (elist;0;0;0,0;aCellSelect) “select the cells in aCellSelect

etCellSel is used to get the cell selection.

AL_SetCellSel 130

Configuring Arealist Pro Using Commands

AL_SetSort

(areaRef:L; column1:l; ...; columnN:l)
Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
— column1; ...; columnN integer Column(s) to perform sort upon

AL_SetSort is used to perform a multi-level sort.

column — These parameters specify the columns to use for the sort criteria.

A column greater than 0 causes an ascending sort to be performed upon that column,
while a column less than 0 causes a descending sort to be performed upon that column.
The arrow indicator will be up or down accordingly for the column. If a column is 0,

or it is a picture array or field, or it contains a field from a related one table, then all
subsequent columns will be ignored.

If the first column has a value other than 0, then the sort indicator will be displayed
in its header accordingly. If the first column has a value of 0, then ArealList Pro will not
sort the columns and no sort indicator wil be displayed.

If the first two column parameters have the same value, then AreaList Pro will not sort the
columns, but the sort indicator will be displayed in its header accordingly for the first column.

You can determine what columns a user has sorted using AL_GetSort.
Examples:

AL _SetSort elist;3;4;7) “sort on columns 3, 4, and 7 (all ascending)

AL _SetSort elist;-1;3;-2) “sort on columns 1 (descending), 3 (ascending), and 2 (descending)
AL_SetSort elist;0) ‘don't sort, and don't display any sort indicator

AL_SetSort (elist;2;2) "don't sort, but do display sort indicator in the header for column 2

AL_SetSort 131

Configuring Arealist Pro Using Commands

AL _SetCellValue

(areaRef:L; row:L; column:l; alphaNumericData:S; pictData:P)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— cellRow longint Row number

— cellColumn integer Column number

— alphaNumericData string Alphanumeric value

— pictData picture Picture data

AL_SetCellValue provides the ability to update the contents of a given cell. You can set either
alphanumeric or picture data.

cellRow — Cell row number.

cellColumn — Cell column number.

olphoNumericDo’ro — Alphanumeric (non-picture) data you wish to use as new value.
pictData — Picture data you wish to use as new value.

See AL _GetClickedRow for an example of using AL_SetCellValue.

AL SetlLine

(areaRef:L; rowNumber:L)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
— rowNumber longint Row number to select (highlight)

AL_SetlLine is used to set the row to be highlighted. This command is used in the On load phase
to set up the initial display of an AreaList Pro object. You can also use it in other phases to control
what element is selected. If this command is not used, then AreaList Pro will display the columns
with the first row selected.

AL_SetCellValue - AL_Setline

132

Configuring Arealist Pro Using Commands

AL _SetlLine should only be used with an ArealList Pro object in single-row mode. If areaRef is in
multi-rows mode, you must use AL SetSelect.

rowNumber — This parameter specifies what row to highlight.
Example:
Case of
:(Form event=On load)
$error:=AL_SetArraysNam (elist;1;3;"aFN";"alN";"aComp")
AL _Setline (elist;3) “highlight 3rd row
End case

AL _SetSelect

(areaRef:L; rowsToSelect:X)

Parameter Type Description
— areaRef longint Reference of ArealList Pro object on layout
— rowsToSelect longint array Contains element numbers to select (highlight)

when the multi-rows option is enabled

AL_SetSelect is used to set the rows to be highlighted. This command is used in the On load phase
to set up the initial display of an ArealList Pro object. You can also use it in other phases to control

what elements are selected. If this command is not used, then AreaList Pro will display the columns
with no rows selected.

AL_SetSelect should only be used with an ArealList Pro object in multi-rows mode. If areaRef is
in single-row mode, you must use AL SetLine.

rowsToSelect — Long integer array. This parameter contains a list of rows which you wish to select,
or highlight.
Example:

“elist Arealist Pro object method
Case of
:(Form event=On load)
ARRAY LONGINT (aRows;2) “create an long integer array with 2 elements
aRows{1}:=1 “set row 1 to be highlighted
aRows{2}:=3 “and row 3 to be highlighted
$error:=AL_SetArraysNam (elist;1;2;"aFN";"alN") “specify arrays to display
AL_SetSelect (elist;aRows) “specify the rows to highlight
End case

AL_Setline- AL_SetSelect 133

Configuring Arealist Pro Using Commands

AL _SetScroll

(areaRef:L; verticalScroll:L; horizontalScroll:|)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— verticalScroll longint Vertical position (element #) to scroll to
— horizontalScroll integer Horizontal position (column #) to scroll to

AL_SetScroll is used to set the position of the thumb in the vertical and horizontal scrollbars.

verticalScroll — This parameter represents the element number to display at the top of the Arealist
Pro display.

horizontalScroll — This parameter represents the column number to display at the left of the Arealist
Pro display.

The value passed to horizontalScroll represents the actual column number, including any columns
which might be currently locked. For example, if the two left columns are locked, and you want to
scroll the list one column to the left, so that the fourth column is adjacent to the second locked column,
then the value to pass is four.

AL_SetScroll can also be used to hide or show the vertical and horizontal scrollbars. The possible
values to use to hide or show the scrollbars are shown in the table below. The default is that both
scrollbars are shown.

Value | VertScroll HorizScroll
>0 | Vertical scroll position Horizontal scroll position
0 Hide when displaying another form (required) Hide when displaying another form (required)
-1 Hide if shown, Show if hidden Hide if shown, Show if hidden
-2 | Show Show
-3 | Hide Hide

When using AL_SetScroll to hide or show the scrollbars, either AL_UpdateArrays with updateMethod
set to -2, or AL_UpdateFields with updateMethod set to 2 must be called.

AL_SetScroll can still be used to set the scroll position even with the scrollbar(s) hidden.

Areal.ist Pro automatically hides the horizontal scrollbar if allowColumnResize in AL SetColOpits is set
to 0 and all of the displayed columns fit within the width of the list area. AreaList Pro automatically
shows the horizontal scrollbar if allowColumnResize in AL_SetColOpts is set to 1 or all of the
displayed columns do not fit within the width of the list area.

AL_SetScroll 134

Configuring Arealist Pro Using Commands

If the horizontal scrollbar is shown or hidden manually by passing -1, -2 or -3 in the horizontalScroll
parameter of AL_SetScroll, then this behavior will be permanently disabled for the ArealList Pro object.

Pass values of zero for verticalScroll and horizontalScroll if another form is going to be displayed
in the window with DIALOG, ADD RECORD or MODIFY RECORD commands. This is required to
inform the Arealist Pro object that another form will be displayed. Neither AL_UpdateArrays nor
AL_UpdateFields should be called in this specific case. See Scroll bars — Changing Displayed Form.

AL_SetScroll can be used in the On load phase or in another phase (form event).
Examples:

“Set an Arealist Pro object to display the 15th element

‘the object is named elist
AL SetScroll(elist;15;1)

‘Configure the Arealist Pro object not to display the vertical scrollbar

If Form event=On Load) ‘do any desired setup, then hide the vertical scrollbar
AL _SetScroll(elist;-1;1)

End if

AL SetColLock

(areaRef:L; columns:l)

Parameter Type Description
— areaRef longint Reference of ArealList Pro object on layout
— columns integer Number of columns to lock

AL_SetColLock is used to set the number of columns to lock. ArealList Pro will not allow more columns
to be locked than the number of displayed columns minus two.

columns — This parameter is used to specify the number of columns to lock.
AL_SetColLock can be used in the On load phase or in another phase (form event).

Example:

AL_SetColLock (elist;2) “lock the first two columns

AL_SetScroll - AL_SetColLock 135

Configuring Arealist Pro Using Commands

AL_SetHeight

(areaRef:L; numHeaderlines:|; headerHeightPad:I; numRowlines:|; rowHeightPad:|;
numFooterlines:|; footerHeightPad:)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— numHeaderlines integer Number of text lines in the header

— headerHeightPad integer Extra height for the header

— numRowlLines integer Number of text lines in each row

— rowHeightPad integer Extra height for each row

— numfFooterlines integer Number of text lines in the footer

— footerHeightPad integer Extra height for the footer

AL_SetHeight is used to set the number of lines of text along with additional height padding in the
header, in the rows, and in the footer. Only text and string columns can wrap to more than one line.

If numRowlines is set to 2 or more, text and string elements will be able to wrap into the number of lines
specified for each row. Note that all rows will be given the same number of lines regardless of the actual
number of lines used by a specific text or string element.

Additional padding may be set using rowHeightPad to allow more space between rows. Text will be
centered vertically in the header or row. Note that the padding applies to the entire row and not on
a line by line basis within the row.

numHeaderlines — The number of lines in the header. Default is 1.
headerHeightPad — The extra height, in pixels, to give to the header. Default is 2.
numRowlLines — The number of lines to give to each row. Default is 1.
rowHeightPad — The extra height, in pixels, to give to each row. Default is 0.
numFooterlines — The number of lines to give to the footer. Default is 1.

footerHeightPad — The extra height, in pixels, to give to the footer. Default is 2.
Examples:

AL SetHeight (elist;1;4;1;2:1;4) "pad the header by 4 pixels, the rows by 2, the footers by 4

AL _SetHeight (elist;2;5;2;0;2;0) “set header lines to 2, pad to 5 pixels, set row lines to 2, no padding,
set footer lines to 2, no padding

AL_SetHeight 136

Configuring Arealist Pro Using Commands

AL_SetMinRowHeight
(areaRef:L; minRowHeight:L)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
— minRowHeight longint Minimum row height

AL_SetMinRowHeight provides the ability to set the minimum row height for AreaList Pro rows.
This is different than row padding as it will allow you to set individual rows to appear with extra
white space, regardless of the amount of data.

minRowHeight — Minimum row height.

The following example will set the minimum row height to two rows, regardless of the amount of data
displayed:

AL_SetMinRowHeight (elist;2)

AL_SetPictureEscape
(areaRef:L; escapeChar:S)

Parameter Type Description
— areaRef longint Reference of ArealList Pro object on layout
- escapeChor string Escape character

AL_SetPictureEscape will set the current escape character used to inform ArealList Pro where icon
references exist in your cell data or headers.

You have the ability to include icons within AreaList Pro headers and cell data using a formatted
character (default ©) to informing AreaList Pro where to look for the icons.

For more details on using header and cell data icons, please refer to the Header/Cell Icon Support section.

escapeChar — Sets the alternate escape character.

The following example will display the “cicn” resource with a resID of 150 in the header before the
header text:

nm.n

AL _SetPictureEscape (area;"~") “set escape to tilde ~
AL SetHeaders (areq;1;1;"~150Header")

AL_SetMinRowHeight - AL_SetPictureEscape 137

Configuring Arealist Pro Using Commands

AL _GetPictureEscape

(areaRef:L) = escapeChar:S

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ escapeChar string Escape character

AL_GetPictureEscape will return the current escape character used to inform AreaList Pro where icon
references exist in your cell data or headers.

escapeChar — Returns the alternate escape character.

The following example will return the escape character we just set in AL_SetPictureEscape:

nm.n

AL_SetPictureEscape (area;"~") “set escape to tilde ~
$char:=AL_GetPictureEscape (area) ‘returns "~" in $char

AL_GetPictureEscape 138

Using the Callback Methods

Using the Callback Methods

A “callback” is a 4D project method which is executed by a plug-in. AreaList Pro lets you make use

of callbacks when entering and exiting an ArealList Pro object. This feature provides you with the ability
to enable/disable buttons or other variables depending upon which object is active.

See Executing a Callback Upon Entering an Area and Executing a Callback Upon Exiting an Area.

See Redrawing the Display from the Callback Method for more information on updating buttons
or other variables from a callback method.

You can also use callback methods when entering and exiting a cell during data entry.
Please read the section Using Callback Methods During Data Entry for more information.

The Event Callback Interface is an alternate method for responding to AreaList Pro events, the other
being the On Plug in Area/AL GetlastEvent (formerly ALProEvt variable) combination (see User Action
Commands and Event Callback vs Object Method).

The Edit Menu Callback system provides an interface of overriding the default behavior when working
with the 4D edit menu.

In addition, a callback is available when the user clicks on the icon which is displayed over the
scrollbars (sort area). See AL _SetHeaderOptions.

Summary

Arealist Pro provides eight different callback methods:

entering an Arealist Pro area (areaEnteredMethod parameter of AL_SetMainCalls)

exiting an Areal st Pro area (areaExitedMethod parameter of AL_SetMainCalls)
entering a cell (entryStartedMethod parameter of AL SetCallbacks)

exiting a cell (entryFinishedMethod parameter of AL_SetCallbacks)

events occurring while in an area (callbackMethod parameter of AL SetEventCallback)

actions on the Edit menu while in an Arealist Pro area (callbackMethod parameter
of AL _SetEditMenuCallback)

calculated columns (calcCallback parameter of AL_SetCalcCall)

clic on a column header (callbackMethod parameter of AL_SetHeaderOptions)

Summary 139

Using the Callback Methods

Warnings

Callback methods called during cell editing (cell enter, cell exit and edit menu) must not
modify underlying data (arrays or records) i.e. must not resize or rebuild the arrays (array
display) or change the current 4D selection (field display).

AL _UpdateArrays can only be called with updateMethod equal to -1 from a callback method
other than an event callback. Please read the section Modifying Array Elements Procedurally
for more information.

AL_UpdateFields can only be called with updateMethod equal to 0 or 1 from a callback
method other than an event callback. The call will be ignored if parameter -2 is used in other
callbacks.

You should not call any AreaList Pro commands which change the number of displayed
columns, their position in the area, or their sorted order.

All callbacks receive the area long integer reference as their first parameter ($1).
You must use the following declaration in your callback method:

C_LONGINT ($1)

Since the long integer $1 parameter contains 4D’s representation of the AreaList Pro object, it can be
used as the first parameter of any ArealList Pro method called.

In addition, some callback methods receive other parameters, which need to be declared as well as
documented below.

Callback methods must not add or delete any columns.

Executing a Callback Upon Entering an Area

An “area entered” callback method is a 4" Dimension project method called whenever the ArealList
Pro object is entered. The area entered callback method is specified by passing the method name in
the areaEnteredMethod parameter of AL_SetMainCalls. If this parameter is a null string then no method
will be called.

The area entered callback method is passed one parameter by ArealList Pro. This parameter is a long integer
that corresponds to the AreaList Pro object on the layout.

You must use the following declaration in your callback method:
C_LONGINT ($1)

You can call AL_GotoCell from the area entered callback to initiate data entry when the object is entered.

Warnings - Executing a Callback Upon Entering an Area 140

Using the Callback Methods

Executing a Callback Upon Exiting an Area

An “area exited” callback method is a 4" Dimension project method called whenever the Areal.ist
Pro object is exited. The area exited callback method is specified by passing the method name in the
areaExitedMethod parameter of AL_SetMainCalls. If this parameter is a null string then no method will
be called.

The area exited callback method is passed one parameter by ArealList Pro. This parameter is a long integer
that corresponds to the AreaList Pro object on the layout.

You must use the following declaration in your callback method:
C_LONGINT($1)

Using Callback Methods During Data Entry

ArealList Pro lets you make use of callbacks when entering and exiting a cell, and when a popup menu
is clicked or released. This feature provides you with considerable control over user actions, allowing you
to do such things as reject an entry, provide a choice list, or simply skip a particular cell.

AL _UpdateArrays can only be called with updateMethod equal to -1 and AL_UpdateFields can only
becalled with updateMethod equal to 0 or 1 from a callback method other than an event callback.

In addition to altering the array content, you can change color and style, reject or accept entered data, and
change the current data entry cell using the AreaList Pro commands listed above. You should not call any
command which changes the number of displayed arrays, their position in the area, or their sorted order.
See Event Callback vs Object Method.

Executing a Callback Upon Entering a Cell

An “entry started” callback method is a 4™ Dimension method called when data entry begins for

a cell or an Arealist Pro popup menu is clicked, and is specified by passing the method name in the
entryStartedMethod parameter of AL_SetCallbacks. If this parameter is a null string then no method will
be called.

ArealList Pro will pass the entryStartedMethod callback method two parameters if arrays are being
displayed, or three parameters if fields are displayed.
the first parameter is a long integer that corresponds to the AreaList Pro object on the layout

the second parameter is a long integer that reports what action (mode) caused data entry to
begin in the cell

the third parameter is a long integer that reports whether the record was loaded or not (when
fields are being displayed)

You must use the following declaration in your callback method:
C_LONGINT ($1;$2;$3)

Executing a Callback Upon Exiting an Area - Using Callback Methods During Data Entry 141

Using the Callback Methods

As stated above, the second parameter passed to the callback routine, the long integer $2, contains the
mode by which data entry began, according to the following table:

Constant Value |Entry Mode
AL Click action 1 Click in Cell
AL Tab key action 2 Tab
AL Shift_Tab key action 3 Shift-Tab
AL Return key action 4 Return
AL Shift_Return key action 5 Shift-Return
AL GotoCell action 6 AL _GotoCell
7 Not used
8 Not used
AL SkipCell action 9 AL SkipCell
AL Other cell popup action 10 Click on cell popup when cursor not already in cell
AL Active cell popup action 11 Click on cell popup when cursor already in cell

The entryStartedMethod callback is also executed whenever a popup menu is clicked, but before the menu
is actually displayed. When this occurs, the entryStartedMode ($2) provided by ArealList Pro will be 10 if
the popup was clicked on a cell other than the one actively in data entry. Mode 11 will be reported if data
entry was already established in the cell for which the popup was clicked.

One of the primary uses of the entryStartedMethod callback when the popup is clicked would be to load
the array from which the popup is built, then use AL SetEnterable to pass the array to ArealList Pro.

If the third parameter is 1, then the record was loaded properly and the field contents can be edited.
If the third parameter is 0, then the record is locked by another process or user.

If typed data entry is underway and the record can not be loaded, then AL_GotoCell or AL_SkipCell
may be used to continue data entry in another cell.

If neither of these commands is called then data entry will end. If popup data entry is underway and the
record can not be loaded then data entry will end.

Executing a Callback Upon Leaving a Cell

An “entry finished” callback method is a 4" Dimension project method called when data entry ends for a
cell, or when an ArealList Pro popup menu is released for a cell not in typed data entry. The entry finished
callback method is specified by passing the method name in the entryFinishedMethod parameter of

AL SetCallbacks. If this parameter is a null string then no method will be called.

The entryFinishedMethod callback method is passed two parameters by Arealist Pro. The first parameter
is a long integer that corresponds to the Arealist Pro object on the layout. The second parameter is a long
integer that reports what action (mode) caused data entry to end in the cell.
You must use the following declarations in your entry finished callback method:

C_BOOLEAN ($0) allow cell exit

C_LONGINT($1;$2)

Using Callback Methods During Data Entry 142

Using the Callback Methods

As stated above, the second parameter passed to the callback routine, the long integer $2, contains the
mode by which data entry ended, according to the following table:

Constant Value | Exit Mode
AL Click action 1 Click outside cell on object
AL Tab key action 2 Tab
AL Shift_Tab key action 3 Shift-Tab
AL Return key action 4 Return
AL Shift_Return key action 5 Shift-Return
AL GotoCell action 6 AL GotoCell
AL ExitCell action 7 AL _ExitCell or “hard deselect”
AL Cell validate action 8 Deselect the cell (“soft deselect”)
9 Not used
AL Other cell popup action 10 Cell popup released when cursor not already in cell
AL Active cell popup action 11 Cell popup released when cursor already in cell

See the sections Compatibility Note — New Menu Architecture and Compatibility Note — AL ExitCell and

AL Cell deselect action become AL ExitCell and AL Cell Validate below for details about “hard deselect”
(mode 7) and “soft deselect” (mode 8)

The entryFinishedMethod callback method is actually a function. It must return True for the value entered
into the cell to be accepted, and False for the value to be rejected. If the value is rejected the user will not
be allowed to leave the cell.

See the 4" Dimension Language Reference for more details about functions and methods.

The entryFinishedMethod callback function is also called when a popup menu is released. In this case,
the entryFinishedMode ($2) reported by Areal ist Pro to the callback will be 10 if typed data entry was in
progress in the cell which contains the popup, or 11 if typed data entry was not in progress in that cell.

AL GotoCell can be used to establish typed data entry on the cell if it did not exist before the popup
was clicked.

If typed data entry is already established for the cell in which the popup exists, the entry finished
callback function will not run when the popup menu is released.

When displaying arrays and data entry is initiated in a cell, the contents of the array element will be
copied into the zero element of the array being displayed in the column. Please read the section
[nitiating Data Entry for more information.

When fields are displayed, the contents of the field are not copied. Thus it is up to you to save the field
contents in the entry started callback method if they will be needed for comparison in the entry finished
callback method.

When displaying arrays and the entry finished callback method is executed, the array element
corresponding to the cell has already been updated with the new value that was entered by the user.

Using Callback Methods During Data Entry 143

Using the Callback Methods

Thus, the zero element which contains the old data and the element representing the current cell can
both be used to determine data validity.
Among the possible situations and responses that may occur are the following:
The data is valid. Set $0:=True to complete data entry for the cell.
The data is invalid. Copy the old data from the zero element to the array element
corresponding to the cell. Set $0:=True to complete data entry for the cell.

For example:

aFname{vRow}:=aFname{0} ‘reset the cell contents to their original state

$0:=True
The data is invalid. Inform the user that the data is invalid. Set $0:=False to force the user
to remain in the cell and enter another value.

The data is invalid. Inform the user that the data is invalid. Modify the cell contents,
call AL_GotoCell to go to the current cell, and set $0:=True. This achieves the same effect
as rejecting the entry, but allows the cell contents to be modified.

For example:

aFname{vRow}:=aFname{0} ‘reset the cell contents to their original state
AL _GotoCell(elist;vColumn;vRow) “go to the same cell
$0:=True

When using an exit callback method, ArealList Pro requires the existence of a result value (C_BOOLEAN)

and failure to have the callback method incorrectly declared will produce an error in compiled
applications:

Runtime Error

A runtime error occurred at line number:
D When executing the method:
. B <Unknown>

Invalid parameters in an Execute command.

COMPILED RUNTIME ERROR WHEN $O NOT DECLARED

Your callback method should be declared as:

C_BOOLEAN ($0) “required
C_LONGINT $1)
C_LONGINT $2)

Using Callback Methods During Data Entry

144

Using the Callback Methods

Compatibility Note — New Menu Architecture

Since version 7.9, it is no longer required to customize the cell exit callback when enterability is
active with the “New Menu Architecture” active. You no longer need to trap and conditionally respond
to AL Cell validate action (mode 8).

Arealist Pro handles correctly Edit menu events if the new Edit menu behavior is set. However, this
may break compatibility with existing code. If the number 8 is added to the first parameter of
AL SetEntryOpts call, AreaList Pro will switch to its previous behavior.

The difference between the two behaviors is as follows: 4D sends two kinds of deselect events to the
plug-in area, real (hard) deselect and validating (soft) deselect.

The first mode (AL ExitCell action) means that the user clicked on another focusable object
(like an edit field) and the focus is going to pass from the ArealList Pro area to the new object.

The second mode (AL Cell validate action) means that the user clicked on some non-focusable
object and the focus will stay on the Arealist Pro area.

However, the difference between focusable and non-focusable objects is not obvious for users, so
Arealist Pro until version 7.8 did not handle the two events differently. With versions 7.9 and above, it
has to, as 4D sends the soft deselect to ArealList Pro before it sends edit menu commands.

Soft deselect is passed to the exit callback method with the entryFinishedMode parameter set to the
value 8 (AL Cell validate action).

When the cell exit callback method is called with this value, it means that editing will not be
finished. This allows validation of the cell value. The developers can always force the former behavior
(no discrimination between deselects) by using the AL_SetEntryOpts call.

Compatibility Note — AL ExitCell and AL Cell deselect action
become AL ExitCell and AL Cell Validate

In versions of AreaList Pro previous to 7.9, there were two constants: AL ExitCell action and

AL Cell Deselect action. It appears that AL ExitCell action was triggered when cell editing had to end,
while AL Cell Deselect action would mean that the callback method can refuse the end of editing,

but this was not implemented consistently, and ArealList Pro manual did not clearly state the difference
between the events either. The manual stated that returning False from exit callback meant that the
area refused to end editing, but ArealList Pro often ignored the return value.

Since version 7.9, Arealist Pro has changed the meaning and handling of these events as follows:

AL ExitCell action (mode 7) means that some event occured that requires the end of an editing
session. The return values will be honored and editing will not end if callback returns False.
For example it means that if, during editing, the user tries to scroll the area, and exit callback
returns False, editing will not be terminated and the area will not scroll.

AL Cell validate action (mode 8) means that 4D requested the validation of the area data,
because it is going to execute some object or form method, but 4D does not want to remove
focus from ArealList Pro area and editing will not end. The return value is not important,

as editing will not end whatever is returned. Note that this event will occur if user clicks on
non-focusable object, including buttons, popups etc. If the executed method requires that
editing ends before the method is executed, it has to call AL_ExitCell at its beginning.

Using Callback Methods During Data Entry 145

Using the Callback Methods

For example, if a cell is currently edited and the user clicks on an enterable 4D field in the layout,
the exit callback method will be called with entryFinishedMode parameter set to the value 7

(AL ExitCell action). If the callback method returns False, then the user action will be denied and

the cursor will remain in the current cell of the AreaList Pro area. If the callback method returns True,
the cursor will move to the object that was clicked.

It the user clicks on a non-focusable object such as a standard MacOS button, the exit callback method
will be called with entryFinishedMode parameter set to the value 8 (AL Cell validate action) and the
cursor will remain in the current cell of the AreaList Pro area no matter the result returned by the
callback method.

Warning: the row containing the currently edited data must not be deleted. No row should be deleted
from any end edit type callback method.

Event Callback Interface

ArealList Pro contains an event management interface which can be used in place of the former During
(On Plug in Area) event. When using the callback interface, 4D will no longer have the interference
previously plagued by the various 4D revisions.

The callback interface is an alternate method for responding to ArealList Pro events. The On Plug in
Area method and AL_GetlastEvent command (formerly ALProEvt variable) can also be used as in older
versions. See Determining the User’s Action on an ArealList Pro Object and Event Callback vs Object
Method.

Edit Menu Callback

AL SetEditMenuCallback provides an interface of overriding the default behavior when working with
the 4D edit menu. You will have the option of overriding an 4D edit action for a given ArealList Pro area,
providing an extensive customization interface when using Edit menu.

Some examples of how the edit menu callback interface can be used:

You can modify the data which is placed on the clipboard to include an additional information
you wish, such as header or footer data, using the AL_GetHeaders and AL GetFooters routines,
followed by calling 4D native clipboard routines.

You can also trap information pasted to an ArealList Pro area, providing an interface which
might take column row data copied from Excel and paste into ArealList Pro area, updating
existing data (inserting or removing rows as necessary).

AL SetCellText will set the currently highlighted cell text which can be obtained during Edit menu
callback.

AL GetCellText will return the currently highlighted cell text which can be obtained during Edit menu
callback.

Using Callback Methods During Data Entry - Event Callback Interface - Edit Menu Callback 146

Using the Callback Methods

Calculated Column Callback

A 4D callback may be attached to a specific column. When information is needed for this column,
Arealist Pro will execute the callback to allow you to fill the column with data. This allows the display
of data calculated from one or more fields as well as any ad hoc data that is desired.

Parameter

$1
$2
$3
$4
$5
$6

Description

Reference of Arealist Pro object on layout
Column number

Type of data in this column

Pointer to temporary 4D array

First record for which to calculate cell

Number of cells to calculate in column

The first three parameters are not absolutely necessary to determine how to fill the column.
They are provided to give you more flexibility in the implementation of the callback method.

The first parameter is the areaRef. This gives you the ability to use this callback method for
more than one ArealList Pro object.

The second parameter is the column number. This gives you the ability to use this callback
method for many columns within a AreaList Pro object.

The third parameter is the type of data in the column.

The last three parameters are absolutely necessary.

The fourth parameter is a pointer to one of the temporary 4D arrays declared in the
Compiler_ALP method. This is where you will load the data to be displayed in the column.

The fifth parameter is the number of the first cell that needs to be filled in the column.
This is the same as the selected number of the row that contains this cell.

The sixth parameter is the number of cells to be filled in the column.

You must declare all six parameters ($1 to $6) in the calculated column callback. If any of these
parameters are not declared, you will get an error when compiling the database.

You must use the following declarations in your callback method:

C_LONGINT($1;$2;$3;$5;$6)

C_POINTER ($4)

See Setting a Calculated Column for details.

Calculated Column Callback

147

Using the Callback Methods

Commands

AL_SetMainCalls
(areaRef:L; areaEnteredMethod:S; areaExitedMethod:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— areaEnteredMethod string 4D project method called when object is entered
— areaExitedMethod string 4D project method called when object is exited

AL_SetMainCalls is used to set callback methods that are used when entering and exiting the ArealList
Pro object.

areaRef — Areal.ist Pro area reference.

areaEnteredMethod — This method will be called whenever the Arealist Pro object is entered.
If this is a null string then no method will be called.

The areaEnteredMethod project method is passed one parameter. This parameter is a long integer that
corresponds to the AreaList Pro object on the layout.

If the Arealist Pro object is the first object in the entry order, when the layout containing the Arealist
Pro object is first opened, the areaEnteredMethod will not be called. This is because 4D gives the event
to Arealist Pro (to inform it that it is to be the active object when the layout is opened) prior to the
execution of the layout’s method. If you want to take action based upon this active object, then call the
areaEnteredMethod from the On load phase in your 4D code.

areaExitedMethod — This method will be called whenever the Arealist Pro object is exited.
If this is the null string then no method will be called.

The areaExitedMethod project method is passed one parameter. This parameter is a long integer that
corresponds to the ArealList Pro object on the layout.

Some of the uses of these callbacks are as follows:

Enabling buttons or other variables that pertain to the AreaList Pro object from the
areaEnteredMethod. With 4D 2003 and earlier versions, you had to use interprocess buttons
or variables and call REDRAW WINDOW or CALL PROCESS (-1) to update them.

This is not needed with 4D 2004 and above.

Disabling buttons or other variables that pertain to the AreaList Pro object from the
areaExitedMethod. With 4D 2003 and earlier versions, you had to use interprocess buttons
or variables and call REDRAW WINDOW or CALL PROCESS (-1) to update them.

This is not needed with 4D 2004 and above.

Call AL_GotoCell from the areaEnteredMethod to initiate data entry when the object is entered.

AL_SetMainCalls 148

Using the Callback Methods

Example:

“Set up area entered and area exited callbacks

AL_SetMainCalls (elist;" AreaEnteredMethod" ;" AreaExitedMethod")

*AreaEnteredMethod, area entered callback method

C_LONGINT($1)

AL_GotoCell($1;1;1) “initiate data entry on the first cell in the first column
ENABLE BUTTON (bChangeSub)

ENABLE BUTTON (bAlRowBkd)

CALL PROCESS (-1)

*AreaExitedMethod, area exited callback method
C_LONGINT($1)

DISABLE BUTTON (bChangeSub)

DISABLE BUTTON (bAlRowBkd)

CALL PROCESS (-1)

AL_SetCallbacks
(areaRef:L; entryStartedMethod:S; entryFinishedMethod:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— entryStartedMethod string 4D method called when entry in cell started
— entryFinishedMethod string 4D method called when entry in cell finished

AL_SetCallbacks is used to set callback methods that are used with data entry. Please read the section
Using Callback Methods During Data Entry for more information.

entryStartedMethod — This project method will be called whenever data entry is started in a cell
or when a popup menu is clicked. If this is the null (empty) string then no method will be called.

The entryStartedMethod is passed two parameters. The first parameter is a longint that corresponds to
the ArealList Pro object on the layout. The second parameter is a longint that reports what action (mode)
caused data entry to be started in the cell.

AL_SetMainCalls - AL_SetCallbacks 149

Using the Callback Methods

For a list of the possible values of the second parameter, see the table below:

Constant Value |Entry Mode
AL Click action 1 Click in Cell
AL Tab key action 2 Tab
AL Shift_Tab key action 3 Shift-Tab
AL Return key action 4 Return
AL Shift_Return key action 5 Shift-Return
AL GotoCell action 6 AL GotoCell
7 Not used
8 Not used
AL SkipCell action 9 AL SkipCell
AL Other cell popup action 10 Click on cell popup when cursor not already in cell
AL Active cell popup action 11 Click on cell popup when cursor already in cell

entryFinishedMethod — This project method will be called whenever data entry is finished in a

cell or when a popup menu is released in a cell for which typed data entry has not been established.
This method must be a function. It must return True for the value entered into the cell to be accepted
and False for the value to be rejected. If this is the null (empty) string then no method will be called.

The entryFinishedMethod is passed two parameters. The first parameter is a longint that corresponds to
the Arealist Pro object on the layout. The second parameter is a longint that reports what action (mode)
caused data entry to be finished in the cell.

For a list of the possible values of the second parameter, see the table below.

Constant Value | Exit Mode

AL Click action 1 Click outside cell on object

AL Tab key action 2 Tab

AL Shift_Tab key action 3 Shift-Tab

AL Return key action 4 Return

AL Shift_Return key action 5 Shift-Return

AL GotoCell action 6 AL_GotoCell

AL ExitCell action 7 AL ExitCell or “hard deselect”

AL Cell validate action 8 Deselect the cell (“soft deselect”)
9 Not used

AL Other cell popup action 10 Cell popup released when cursor not already in cell

AL Active cell popup action

11

Cell popup released when cursor already in cell

When a cell is entered the data will be copied into the zero element of the array being displayed in
the column. When the entryFinishedMethod is executed the array element corresponding to the cell will
already be updated with the new value that was entered.

AL_SetCallbacks 150

Using the Callback Methods

Among the possible situations and responses that may occur are the following:
The data is valid. Set $0:=True to complete data entry for the cell.

The data is invalid. Copy the old data from the zero element to the array element
corresponding to the cell. Set $0:=True to complete data entry for the cell.

For example:

aFname{vRow}:=aFname{0} ‘reset the cell contents to their original state

$0:=True
The data is invalid. Inform the user that the data is invalid. Set $0:=False to force the user to
remain in the cell and enter another value.

The data is invalid. Inform the user that the data is invalid. Modify the cell contents,
call AL_GotoCell to go to the current cell, and set $0:=True. This achieves the same effect
as rejecting the entry, but allows the cell contents to be modified.

Examples:

aFname{vRow}:=aFname{0} ‘reset the cell contents to their original state
AL _GotoCell(elist;vColumn;vRow) “go to the same cell
$0:=True

‘Don't install an entry started method, do install an entry finished method
AL SetCallbacks (elist;"";"EntryDoneMethod")

See also Compatibility Note — AL ExitCell and AL Cell deselect action become AL ExitCell and AL Cell
Validate.

AL_SetEventCallback
(areaRef:L; callbackMethod:S; flag:L) = resultCode:L

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
— callbackMethod string A valid 4™ Dimension method which will be called

during ArealList Pro event execution

— Hcg integer Handling flag

AL_SetEventCallback provides an alternate method for dealing with all the events which can be
triggered when working with AreaList Pro areas. The historical event triggering system (AL GetlLastEvent
command, formerly ALProEvt variable) still works, but the callback method provides a more generic
developer control for precise event handling.

Note that some 4D commands can only be called with the On Plug in Area method and
AL GetlastEvent command (formerly ALProEvt variable). See User Action Commands.

AL_SetCallbacks - AL_SetEventCallback 151

Using the Callback Methods

callbackMethod — A valid 4" Dimension method which will be called during AreaList Pro event execution.

flag — Compatibility flag that defines how and when the area object method is executed:

0 — compatible mode, the area object method and the form method are executed in ArealList
Pro 7.9 and above the same way as in earlier versions

1 — the area object method and the form method are executed except for events that require
posting cmd-\ (single-click and scroll events)

2 — the area object method and the form method are not executed at all (use the event
callback)

Control-click events are reported to the event method immediately (when the mouse is still down).

The following example installs an event callback method which is executed during any Arealist Pro event:
$err:=AL_SetEventCallback (areaRef;"CallbackMethod";2)

The callbackMethod is a 4D project method with the following declarations:
C_LONGINT ($0) “object method and form method will not be executed if O
C_LONGINT ($1;$areq) "Arealist Pro area
C_LONGINT ($2;$alpEvent) "Arealist Pro event
C_LONGINT ($3;$alpEventMod) “event modifier — unused now, may be used later for passing

additional info about the event
C_LONGINT ($4;$col) “column — last clicked column
C_LONGINT ($5;$row) ‘row — last clicked row
C_LONGINT ($6; $modifiers) ‘modifiers
C_STRING (255;$7;$tip) “tip string
C_STRING (255;$8;$areaName) “plug-in area name (see AL_SetAreaName)

The $0 result code can be set to 0 or 1:
0 — indicates that the event was handled by the callback method

1 — indicates that the event was not handled by the callback method, the object method or
form method will be executed with the $2 event as AL GetlastEvent (formerly ALProEvt
variable).

$2 contains the same Arealist Pro event as passed by the AL_GetlastEvent command (formerly
AlProEvt variable) to the area object method or form method.

The handling of events is similar in both cases, so if you want to have both single and double-clicks

reported, ArealList Pro will still wait for the double-click time to decide if it received a single or a
double-click.

See User Action Commands for additional information about event codes.

AL_SetEventCallback 152

Using the Callback Methods

AL_SetEditMenuCallback
(areaRef:L; callbackMethod:S) = resultCode:L

Parameter
— areaRef
— callbackMethod

+ resultCode

Type Description
longint

string

longint Result code

Reference of Arealist Pro object on layout

4D project method called when the Edit menu is used

AL_SetEditMenuCallback provides an interface of overriding the default behavior when working with

the 4D edit menu.

callbackMethod — Desired Edit menu callback method to use for the given area.

The edit menu callback method will receive the area reference (parameter $1) and the edit event

(parameter $2).

Edit events are received in the longint $2 parameter, using bitwise operators to extract subevents.

When you wish to act on several edit menu items, the value is the result of a bitwise operation.

For more information on working with bitwise values, please refer to the 4" Dimension Command

Reference

Edit menu constant Value | Description Bit position constant Value
AL Edit Menu Setup Mask 65536 | ArealList Pro is setting up edit menu, before AL Edit Menu Setup Bit 16
menu is displayed
AL Edit Menu Entry Mask 32768 | Arealist Pro cell editing is in progress AL Edit menu Entry Bit 15
AL Edit Menu All Items Mask 127 | Arealist Pro is using all possible edit menu
items
AL Edit Menu Select All Mask 64 | Reference to Edit menu select all menu item AL Edit Menu Select 6
All Bit
AL Edit Menu Clear Mask 32 | Reference to Edit menu clear menu item AL Edit Menu Clear Bit 5
AL Edit Menu Paste Mask 16 | Reference to Edit menu paste menu item AL Edit Menu Paste Bit 4
AL Edit Menu Copy Mask 8 Reference to Edit menu copy menu item AL Edit Menu Copy Bit 3
AL Edit Menu Cut Mask 4 Reference to Edit menu cut menu item AL Edit Menu Cut Bit 2
AL Edit Menu Redo Mask 2 Reference to Edit menu redo menu item AL Edit Menu Redo Bit 1
AL Edit Menu Undo Mask 1 Reference to Edit menu undo menu item AL Edit Menu Undo Bit 0
AL_SetEditMenuCallback 153

Using the Callback Methods

The Edit menu callback returns a longint $0 result, containing details of what action(s) should take place

When working with the callback, you can return a series of values. If you want ArealList Pro to handle
the Edit menu selection, return a value of zero (0). If wish to customize the result, return AL Edit Menu
Handled Mask (tells AreaList Pro that we handled the menu in the callback method).

Edit menu constant

Value

Description

Bit position constant

Value

AL Edit Menu Handled Mask

131072

Tells AreaList Pro that the callback method
handled the Edit menu operation

AL Edit Menu Handled
Bit

17

For example, If you wish to tell ArealList Pro to enable only the Copy and Select All menu items
(overriding default settings), you would return the following result.

$AL_Result:=($AL_Result & AL Edit Menu All ltems Mask) 2+ AL Edit Menu Handled Bit
$AL_Result:=$AL_Result 2+ AL Edit Menu Copy Bit “enable copy menu item
$AL Result:=$AL_Result 2+ AL Edit Menu Select All Bit *enable select all menu item

$0:=$AL_Result

Edit Menu Callback Framework

The callback method should include the following framework parameter declaration. Each parameter

must be declared in every callback method and a result value must be returned. Failure to properly

declare variables or return the result variable will produce a compiler error when using database in

compiled mode.

*$0: result

'0 — Avrealist Pro will handle event (defauli)

>0 — callback handled event

*$1: Arealist Pro area reference
*$2: Arealist Pro Edit event
*$3: Undo (unused, but required internally)
C_LONGINT ($0;$AL_Result)
C_LONGINT ($1;3AL_Areq)
C_LONGINT ($2;$AL_Event)
C_TEXT ($3;$AL_Undo)
$AL Result:=0 *default result, Arealist Pro will handle event

$AL Area:=$1
$AL_Event:=$2
$AL Undo:=$3
Case of

End case
$0:=$AL_Result

AL_SetEditMenuCallback

154

Using the Callback Methods

AL _SetCalcCall

(areaRef:L; columnNumber:l; calcCallback:S)

Parameter Type Description

— areaRef longint Reference of ArealList Pro object on layout

— columnNumber integer Column number

— calcCallback string 4D method called ot fill row(s) of a calculated column

AL_SetCalcCall is used to set a callback method for a calculated column.
columnNumber — This parameter specifies the column on which to attach the calcCallback method.

calcCallback — This method will be called whenever row(s) need to be filled in a calculated column.
If this is an empty string then no method will be called.

The first two parameters ($1 and $2) passed to this callback method are areaRef and columnNumber.
Therefore, if desired, the same callback can be used for more than one ArealList Pro object and for many
columns in an object.

For information on how to write a calculated column callback, see the section Calculated Column Callback.

Example:

*Set calculated callback method for column 3

AL _SetCalcCall(elist;3;"CalcColCallback")

AL_SetCalcCall 155

Field and Record Commands

Field and Record Commands

Arealist Pro uses the SELECTION RANGE TO ARRAY command in 4D to get the records for display.
Up to 512 fields (columns) can be displayed in an ArealList Pro object.

You can use the Advanced Properties Dialog to configure the fields to display in an AreaList Pro object.
Please read the section Configuring Arealist Pro Using the Advanced Properties Dialog for more
information.

Using the Field Display Capability

Temporary Arrays

Arealist Pro internally uses interprocess 4D arrays to get the record data from 4™ Dimension. These
arrays must be declared in 4D. A text file has been included that contains these declarations. Simply
create a 4D global method named Compiler_ALP and copy these declarations into it. There is no need
to call this method from your 4D code, Arealist Pro will call it for you. This method must exist whether
your database is interpreted or compiled.

Do not access the data within these temporary arrays. These arrays are for AreaList Pro’s internal use
only and their contents may change at any time.

Only 30 arrays of each of the 9 data types that AreaList Pro supports are declared. If you will be
displaying more than 30 fields of a certain type, then you must add more declarations within the
Compiler_ALP project method.

Conversely, you may remove some of these declarations if you never display fields (or display very few
fields) of a certain type. Be very careful (when adding or removing declarations) to follow exactly the
syntax of the existing declarations.

Arrays and Fields

To change the display from arrays to fields, first call AL_RemoveArrays to remove all of the arrays before
calling any field commands.

To change the display from fields to arrays, first call AL_RemoveFields to remove all of the fields before
calling any array commands.

Arrays and fields may not be displayed together in the same Arealist Pro object. If arrays are displayed
in an object, then the field commands will be ignored. Conversely, if fields are displayed in an object,
then the array commands will be ignored.

Using the Field Display Capability 156

Field and Record Commands

Compatibility Note — Field Display and Callbacks

With ArealList Pro 7.9 and above, if you are using AreaList Pro to display fields and are performing
custom actions via ArealList Pro’s exit callback (see AL_SetCallbacks) you should no longer be executing
code which will change the current selection as ArealList Pro now maintains the current record status
when the exit callback method is invoked.

For example, with previous versions you had to do something like the following in your exit callback code:
AL GetCurrCell($1;$row;$col)
GOTO SELECTED RECORD ([Customers]; $row)

This is no longer required and if the code is still making this type of call that will change the current
selection, you will lose your edits.

When inside the callback method, you can obtain the previous table value by using the 4D Command Old.

$prevValue:=0Old ([Customers]Zip)
If ($prevValue#[Customers]Zip)

$ret:=ZC_LookupZip ([Customers]Zip;->[Customers]City;[Customers]State)
End if

Setting a Calculated Column

The commands AL SetFields and AL InsertFields are used both to set fields to be displayed and to set up
calculated columns.

If the fieldNum parameter contains an integer greater than or equal to 1, the column wil display the field
represented by that number.

If the fieldNum parameter contains an integer less than or equal to 0, the column will display calculated
data. The absolute value of fieldNum will determine the type of data to be displayed in the column.
The following table shows the data types that may be displayed in a calculated column.

Constant Value

Is A||Qha Field 0
Is Real

Is Text

Is Picture

Is Date

Is Boolean

Is Integer

Is Longlnt
Is Time

O ||| |W(N|—

—_
—_

For example, to display a calculated solumn of type Real, pass Is Real (-1) in the fieldNum parameter.

Compatibility Note — Field Display and Callbacks - Setting a Calculated Column 157

Field and Record Commands

Setting the Callback Method

Use the AL SetCalcCall command to set the callback method for a column.

Arealist Pro will dimension the temporary array before invoking the calculated column callback.
There is no need to do it in the callback itself.

The following is an example of a calculated callback method. It merely calculates an employee’s one
year anniversary by adding 365 to their hire date (this obviously does not take into account leap years,
but is sufficient as an example).

*CalcColCallback

*$1: Area reference (Arealist Pro longint reference)

*$2: Column number

*$3: Type of data in this column

*$4: Pointer to temporary 4D array

*$5: First record for which to calculate cell

*$6: Number of cells to calculate in column

‘Declare the parameters

C_LONGINT ($1;$2;$3;$5;$6) “these must be declared
C_POINTER ($4) “this must be declared

C_LONGINT ($i)

ARRAY DATE ($aHireDate;0)

SELECTION RANGE TO ARRAY ($5;$5+%6-1;[Employee]Hire Date; $aHireDate)

For ($i;1;$6)
$4->{$i}:=$aHireDate{$i}+365
End for
Sorting

Calculated columns will not be sorted when their column header is clicked upon. However, if the
userSort option of AL_SetSortOpts command is set to 2, “Bypass the user sort buttons”, and the column
header of a calculated column is clicked upon, the ArealList Pro event callback (or area/form method)
will run, with a $2 event code of -1 returned to the callback method (or AL_GetLastEvent command,
formerly ALProEvt variable). See Determining the User’s Action on an Arealist Pro Object.

The command AL SetSort command will not allow sorting of calculated columns.

Enterability

Calculated columns are not enterable by any method, including using the AL_GotoCell command.

Time Data
Time data will be converted to a longint since this is how it is stored internally by 4D.

Setting a Calculated Column 158

Field and Record Commands

Displaying 4D Fields

Fields from Related One Tables

Fields from a main table and from related one tables may be displayed in the same ArealList Pro object.
See the commands AL SetFile and AL _SetFields for further information about displaying fields from
related one tables.

Redraw and Scrolling

When 4D fields are displayed, the visible rows are cached (held in memory). This is done to improve
redraw speed. Every field within the visible rows are held in memory so horizontal scrolling is as fast
as when displaying arrays. Vertical scrolling will be slower since the records not in view have to be
retrieved from 4D.

Type-ahead
Keyboard type-ahead will be disabled when displaying fields.

Copy Rows to the Clipboard

Copying rows to the clipboard will not be allowed when displaying fields. The “Copy” menu item will
be disabled when fields are displayed.

Enterability

Columns containing fields from a related one table will not be enterable either by typing or by using
popups.

Dragging

When displaying arrays, AreaList Pro will rearrange the rows automatically when the user drags

a row within the list. When displaying fields, AreaList Pro will not rearrange the rows automatically
when the user drags a row within the list. Thus the moveWithData option of AL_SetRowOpts and the
moveWithData of AL _SetCellOpts do not apply when fields are displayed and the user drags a row
within the list.

Sorting
indexed fields will be bold in the Sort Editor

fields from related one tables will be dimmed in the Sort Editor

columns containing fields from a related one table will not be sorted when their column
header is clicked upon

When fields are displayed the moveWithData of AL_SetRowOpts will be ignored when sorting.
The row style and color information will not move with the row when the Arealist Pro object is sorted.

When fields are displayed the moveWithData of AL_SetCellOpts will be ignored when sorting.

Displaying 4D Fields 159

Field and Record Commands

The cell style and color information will not move with the cell when the AreaList Pro object is sorted.

When the userSort option of AL SetSortOpts is set to 3 and fields are being displayed, only columns
containing indexed fields may be sorted by clicking on their column header.

Arealist Pro uses 4" Dimension’s sorting routines when sorting fields. 4D only uses indexes when
performing a single level sort. Indexes are ignored when performing a multiple level sort. Therefore,
when fields are being displayed, it would be a good idea to restrict access to the Arealist Pro sort
editor when the selection contains several thousand records.

Maximum Number of Records Displayed

Arealist Pro supports a maximum of 2 billion (exactly 2 147 483 647) records displayed in an ArealL.ist
Pro object.

You can also display a selection with any desired number of records up to this limit, using AL_SetSubSelect
to specify what record range within the current selection you wish to display.

Performance Issues When Displaying Fields

When ArealList Pro displays fields, the automatic column sizing algorithm uses only the first 20 records
(or less, if the selection contains less than 20 records) in the selection. These records are always read
regardless of whether the columns are automatically or manually sized.

Therefore there is no performance penalty using the automatic column sizing algorithm when displaying
fields. See Performance Issues with Formatting Commands for more information.

Commands

AL_SetFile

(areaRef:L; tableNum:l) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— tableNum integer Number of 4D table

« resultCode longint Result code

AL_SetFile tells AreaList Pro what table is the main table from which to display records.

This command is only necessary if the field to be displayed in column one is not from the main table,
but from a related one table.

AL_SetFile must be called before any fields have been set, otherwise it will be ignored. If this command
is not called, then ArealList Pro will use the table of the field displayed in column one as the main table.

Displaying 4D Fields - AL_SetFile 160

Field and Record Commands

resultCode — The possible values are:

Value | Result Code | Action

0 No error
1 Not a table Check to make sure that the table represented by tableNum does exist
Example:

$result:=AL_SetFile (elist;Table (->[People]))

AL _ SetFields

(areaRef:L; tableNum:l; columnNumber:l; numFields:I; fieldNum1; ...; fieldNumN:l)

— resultCode:L

Parameter

— areaRef

— tableNum

— columnNumber
— numFields

— fieldNum

+ resultCode

Type

longint
integer
integer
integer
integer

longint

Description

Reference of Arealist Pro object on layout
Number of 4D table

Column at which to set the first field
Number of fields to set (up to 15)

Number of 4D field

Result code

AL_SetFields tells AreaList Pro what fields to display. Up to fifteen fields can be set at a time.
Any 4D field type can be used except sub-tables.

Fields from related one tables may also be displayed (see AL SetFile). A separate call to AL_SetFields
must be made to set these fields. To display a related one field, pass the table number of the related one
table in the tableNum parameter.

resultCode — The possible values are:

Constant Value | Action

AL No error in fields 0

AL Not a file error 1 Check to make sure that the table represented by tableNum does exist
AL Not a field error 2 Check to make sure that the field represented by fieldNum does exist
AL Wrong type field error 3 Sub-tables are not allowed

AL Max fields exceeded error 4 512 fields is the maximum

AL Wrong 4D vers for fields 5 (obsolete)

AL Low memory field error 6 Increase 4D’s RAM partition

AL_SetFile - AL_SetFields 161

Field and Record Commands

Examples:

*Set up the elist Arealist Pro object with 5 fields, all from the same table
$error:=AL_SetFields (elist;Table (->[People]); 1;5;Field (->[People]First Name);

Field (->[People]Last Name);Field (->[People]Salary);Field (->[People] Arrival);Field (->[People]Male))
“Set up the elist Arealist Pro object with 4 fields, the third one from a related table

$error:=AL_SetFields (elist;Table (->[People]); 1;2;Field (->[People]First Name);
Field (->[People]Last Name))

$error:=AL_SeftFields (elist;Table (->[Companies]);3; 1;Field (->[Companies| Company Name))
$error: AL_SetFields (elist;Table (->[People]);4;1;Field (>[People]Salary))

*Set up the elist Arealist Pro object with 4 fields, the first one from a related table

$error:=AL_SeffFile (elist;Table (->[People])) “set the main table since the field to be set in column one is
not from the main table, but from a related one table

$error:=AL_SeftFields (elist;Table (->[Companies]); 1;1;Field (->[Companies| Company Name))

$error:=AL_SeftFields (elist;Table (->[People]);2;3;Field (->[People]First Name);
Field (->[People]Last Name); Field (->[People]Salary))

AL_GetMode

(areaRef:L) = resultCode:L
Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ resultCode longint Result code

AL_GetMode will return the type of display method you are using for the supplied ArealList Pro
areaRef area.

result — Returns one of the following results:
0 — a value of zero will be returned if you are displaying arrays
1 — a value of one will be returned if you are displaying fields

The following will build an ArealList Pro area based on field references from a parent and related table.
$ret:= AL_SetFields (elist;Table (>[People]); 1;2;Field (>[People]FirstName);Field (> [People]LastName))
$ret:= AL_SetFields (elist;Table (->[Companies]);3; 1;Field (->[Companies| Company Name))
$ret:= AL_SetFields (elist;Table (>[People]);4; 1;Field (>[People]Salary))

Then, we'll use the AL_GetMode routine to determine the type of objects we are using to build the list.

$ret:=AL_GetMode (elist) “a value of 1 will be returned as we are using fields

AL_SetFields - AL_GetMode 162

Field and Record Commands

AL GetTable

(areaRef:L) = tableNumber:L

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ tableNumber longint Primary table number

AL_GetTable will return the primary table number you are using for the supplied Arealist Pro reference.
This is the table number supplied by AL SetFields, AL InsertFields or AL SetFile.

tableNumber — Returns the primary table number.

The following will build an Arealist Pro area based on field references from a parent and related table:
$ret:= AL_SetFields (elist;Table (>[People]); 1;2;Field (>[People]FirstName);Field (> [People]LastName))
$ret:= AL_SetFields (elist;Table (>[Companies]);3; 1;Field (->[Companies| Company Name))
$ret:= AL_SetFields (elist;Table (>[People]);4; 1;Field (>[People]Salary))

Then, we'll use the AL_GetTable routine to determine the primary table.

$ret:=AL_GetTable (elist) “the table number associated to [People] table will be returned.

AL_GetFields
(areaRef:L; tableArray:X; fieldArray:X) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+— tableArray longint array List of table numbers

+ fieldArray longint array List of field numbers

+ resultCode longint Result code

AL_GetFields will return an array of table and field numbers used to build the list reference based on
4D field references (see AL_SetFields).

tableArray — A valid 4" Dimension longint array which will contain the list of table numbers.
fieldArray — A valid 4™ Dimension longint array which will contain the list of field numbers.

result — Returns one of the following results:
-50 — Parameter error (array of wrong type, must be longint arrays)
-1 — Wrong mode (see AL_GetMode)

AL_GetTable - AL_GetFields 163

Field and Record Commands

The following example will build an ArealList Pro area based on field references from a parent and
related table:

$ret:= AL_SetFields (elist;Table (>[People]); 1;2;Field (>[People]FirstName);Field (> [People]LastName))
$ret:= AL_SeftFields (elist;Table (->[Companies]);3;1;Field (->[Companies| Company Name))
$ret:= AL_SeftFields (elist;Table (->[People]);4; 1;Field (->[People]Salary))

Then, we'll use the AL_GetFields routine to return arrays of table and field numbers.

ARRAY LONGINT (aiAl_TableNo;0)
ARRAY LONGINT (aiAL_FieldNo;0)
$ret:=AL_GetFields (elist;aiAL_TableNo;aiAL_FieldNo)

aiAL_TableNo and aiAL_FieldNo will contain 3 entries each.

AL InsertFields

(areaRef:L; tableNum:l; columnNumber:l; numFields:I; fieldNum1:l ... fieldNumN:I)
— resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— tableNum integer Number of 4D table

— columnNumber integer Column at which to set the first field

— numFields integer Number of fields to set (up to 15)

— fieldNum1; ... fieldNumN integer Number of 4D field(s)

+ resultCode longint Result code

AL_InsertFields functions the same as AL SetFields, except that the fields are inserted before
columnNumber.

All subsequent columns will maintain their settings. In other words, any header text, column styles, etc.
will stay with their corresponding field.

Example:

"Add a column to display the first name
$result:=AL_InsertFields (elist;Table (->[People]);4;1;Field (->[People]First Name)

AL_GeftFields - AL_InsertFields 164

Field and Record Commands

AL RemoveFields

(areaRef:L; columnNumber:l; numFields:)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column at which to remove the first field
— numFields integer Number of fields to remove (up to 512)

AL_RemoveFields is used to remove fields from ArealList Pro. numFields, beginning at columnNumber,
will be removed from the list. All subsequent columns will maintain their settings. In other words, any
header text, column styles, etc. will stay with their corresponding field.

Example:

‘Remove two columns, beginning at column #4
AL_RemoveFields (elist;4;2)

AL_UpdateFields
(areaRef:L; updateMethod:l)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
— updateMethod integer Method to use to update the ArealList Pro object

AL_UpdateFields is used to update ArealList Pro. Use this command whenever any records of the fields
being displayed are changed (records added, deleted, or modified), but the fields themselves remain
the same. AL_UpdateFields must be called after modifying the fields and before any other setup
commands (sorting, formatting, etc.).

updateMethod — This parameter tells ArealList Pro how to update the AreaList Pro object areaRef.
The possible values are:

Constant Value | Description When to Use

AL Refresh fields 0 | Refresh the Arealist Pro object, but When changes are made to formatting,
don’t update any records, and don't color, styles, etc.
recalculate any values

AL Refresh and 1 Refresh the ArealList Pro object, and When changes are made to the contents

update fields update the visible records, but don't of the records shown in the visible rows
recalculate any values

AL Recalculate 2 Rescan all visible rows and recalculate | If column or row resizing is necessary,

fields all applicable heights, widths, and other | or you have added or deleted records
related values. The scroll position, and | pertaining to the displayed fields. Also
row or cell selection will be reset if you show or hide either scrollbar, the

headers, or footers

AL_RemoveFields - AL_UpdateFields 165

Field and Record Commands

AL SetSubSelect

(areaRef:L; firstRecord:L; numRecords:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— firstRecord longint First record to display

— numRecords longint Number of records to display

AL_SetSubSelect is used to tell AreaList Pro to display a different subselection of records from
the current selection.

This command will have the same effect on the ArealList Pro object as calling AL_UpdateFields with
updateMethod set to 2, in addition to changing the subselection of records to be displayed. Thus if this
command is called, there is no need to also call AL_UpdateFields.

firstRecord — This parameter is used to set the first record in the selection to be displayed in the
ArealList Pro object. If firstRecord is greater than or equal to the number of records in the selection,
then it will be set to the last record in the selection. The default is 1.

numRecords — This parameter is used to set the number of records in the selection to be displayed in
the ArealList Pro object. The possible values are:

Value | Description

>=0 | Display this number of records

-1 Display the number of records from firstRecord until the end of the selection

If numRecords is greater than the number of records from firstRecord until the end of the selection,
then numRecords will be set to the number of records from firstRecord until the end of the selection.

If this command is not called, then firstRecord will be set to 1 and numRecords will be set to the number
of records in the selection.

Example:

“Set up the elist Arealist Pro object to display 10,000 records beginning at record 5001
AL_SetSubSelect (elist;5001;10000)

AL_SetSubSelect 166

Enterability

Enterability

Initiating Data Entry

The method for initiating entry to a cell, and for selecting rows, is set with the entryMode parameter
of AL_SetEntryOpts.

Initiating entry can be done in any one of eight different ways, each of which also determines the
method for selecting rows. See AL SetEntryOpts for complete information.

Enterability for a column is set using AL SetEnterable.

Entering Data

The capability to edit data during typed data entry is initiated automatically, and no programming is
necessary to invoke these functions.

When data entry is initiated on an ArealList Pro cell, the array contents for the element corresponding
to that cell are copied to the zero element of the same array.

Since this element is usually never used, it makes a convenient storage place for the data in case you
wish to revert to the old value; however, you should take care not to use this zero array element
elsewhere in your code while data entry is in progress.

When fields are displayed you are responsible for saving the contents of the field.

Two commands, AL SetCellHigh and AL_GetCellHigh, can be used to set the highlighted range
of characters in the data entry cell, or get the range of characters highlighted by the user, respectively.
AL_SetCellHigh can also be used to set the insertion point between two characters.

After the user ends data entry on a particular array element, AL_GetCellMod can be used to determine
if the data has been altered. AL_GetCellMod and AL_GetCellHigh can only be used within an entry
finished callback method. See Using Callback Methods During Data Entry.

Other programmable data entry specifications include the use of the Return key for movement during data
entry, or insertion of a carriage return character into the text data being entered. This is controlled using the
allowReturn parameter of AL_SetEntryOpts. Please read the section Moving the Current Entry Cell for more
information.

You can also specify that seconds be displayed (hh:mm:ss) when the user is entering time data through
the use of the displaySeconds parameter of AL_SetEntryOpts.

For boolean data type arrays, two data entry methods can be specified: a checkbox or radio buttons.
AL SetEntryCtls is used to specify which of these controls is used, and to which column it applies.

Initiating Data Entry - Entering Data 167

Enterability

Filters

In order to use data entry filters AL SetFilter must be used on a per column basis.

Standard 4D filter strings can be used, except that placeholders are not supported and will be ignored.
Pre-defined styles may not be used for data entry filters.

Click and Hold Data Entry Initiation

Cell entry will be initiated when the user clicks and holds down the mouse button for the developer
determined period of time.

When you have configured ArealList Pro to allow data entry (using AL _SetEntryOpts) with an modifier-
click (control, command, etc.) data entry will be automatically initiated when the user holds down the
mouse button.

This interface will allow you to create an interface whereby users can single-click or double-click on
cells and initiate data entry without requiring the defined keyboard modifier.

The following example has data entry configured as control-double-click, however, it will also be
activated when the user has held down the mouse button in an enterable cell for one second (60 ticks)
as configured in AL Setlnterface:

AL _Setinterface (elist;-1;-1;-1;-1,60) ‘initiate data entry after one second of holding
AL_SetEntryOpts (elist;7;0)

Entry Cell Border

Arealist Pro uses the native cell border when performing data entry. Native system commands are used
on both platforms to draw a focus rectangle around the edited text.

ind: Product_Name @ begins with E] T
tive [Product Name: it Platform
R Arealist Pro MacOS
B Arealist Prd MacOS
L] ArealList Pro Windows|
] Arealist Pro Windows|
é Arealist Pro MacOS

AREALIST PRO CELL BORDER

Filters - Click and Hold Data Entry Initiation - Entry Cell Border 168

Enterability

Popups

As an alternative to typed data entry, you can specify that a column use popup menus by using the
popupArray parameter of AL SetEnterable. In this parameter, an array is passed to Arealist Pro,
with which ArealList Pro will build a popup menu.

No array needs be passed to ArealList Pro for a time or date column which uses a popup menu. AreaList
Pro provides specialized menus for these data types. The presence of a popup menu in a cell does not
prohibit the user from entering typed data; the enterability parameter of AL_SetEnterable allows you to
control whether either one or both of these data entry methods are allowed.

The popup menu array must be of the same data type as the data in the column. It is important that
the array used for a popup not be disposed of until it is no longer needed.

AL SetEnterable must be called when any changes are made to a popupArray.

You can optionally disable meta characters in AreaList Pro enterable popup controls, enabling you to
use special characters such as "/" or "(" in menu items.

There are two different methods for disabling meta characters. The first method will be using a new
parameter in AL Setlnterface routine, while the second method will be using new options in the
AL_SetEnterable routine.

Moving the Current Entry Cell

The action of the Carriage Return key is determined by the programmer using the allowReturn parameter
of AL SetEntryOpts, depending upon the data entry requirements of the database.

The user’s ability to control movement while in data entry can also be established with the use of the
moveWithArrows and mapEnterKey parameters of this command. The moveWithArrows parameter will
allow the user to move from cell to cell while in data entry using the four Arrow keys. mapEnterKey
enables you to cause the Enter key to act the same way as either the Tab key or the Return key.

When using this parameter, it should be noted that the Enter key is often used in 4™ Dimension for
other functions which may conflict with its ArealList Pro meaning.

A variety of AreaList Pro commands enable you to monitor and control movement during data entry.
The current and previous data entry cells can be determined by using AL_GetCurrCell and AL_GetPrevCell,
respectively. Movement from cell to cell, while staying in data entry mode, can be accomplished using AL
GotoCell. AL SkipCell can be used in the entry started callback method to cause data entry on a

particular cell to be skipped. Data entry can be terminated via AL_ExitCell.

Popups - Moving the Current Entry Cell 169

Enterability

Compatibility Note
Adding or Deleting Rows from a Form Button

When using Arealist Pro as an included layout, it is common to have buttons in the input form to

add or delete rows from the AreaList Pro area. The code that performs this type of action, if written
before version 7.9, requires a small change so that the records are correctly added/deleted when using
enterability. There are three different methods you can use to handle this issue.

1 — option one will be to modify the call to AL SetEntryOpts to instruct 4D to commit the
current cell when the focus is lost:

AL_SetEntryOpts (elist;n+8;...) "where n is the desired data entry trigger

2 — option two will be to call AL _ExitCell in the object method of the add or delete button on
each method which performs a similar action:

AL _ExitCell (eCustomers)

3 — place a call in each of the exit callback methods to instruct ArealList Pro to exit the cell:
AL _ExitCell($1)

Redrawing the Display from the Callback Method

You may want to display a variable which has been updated in one of the available callback methods
on the same layout as the ArealList Pro object. The variable’s value will be successfully updated in the
callback method, but it will not be displayed on the layout immediately. This is because 4D will not
refresh the screen when a displayed value changes while a plug-in is controlling execution.

If the command REDRAW WINDOW is called or CALL PROCESS is used with the process id parameter
set to -1, 4D will refresh all windows displaying an interprocess variable. This method requires that if a
variable is updated from the callback method, then it must be an interprocess variable. In addition, the
REDRAW WINDOW or CALL PROCESS commands should be executed from the callback method.

Example:

C_LONGINT ($1;$2;$AL_Object; $Action; $i)

C_REAL ($Total)

$AL_Object:=$1

$Action:=$2

$Total:=0

For ($i;1;Size of array (cAmounts))
$Total:=$Total+aAmounts{ $i}

End for

{Total:=$Total

CALL PROCESS |-1)

$0:=True

Compatibility Note — Adding or Deleting Rows from a Form Button - Redrawing the Display from the Callback Method 170

Enterability

Exiting Data Entry

Entry mode can be terminated procedurally by using AL ExitCell.

Commands

AL_SetEnterable
(areaRef:L; columNumber:I; enterability:l; popupArray:X; menuPackRef:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column to apply enterability

— enterability integer Enterability mode

— popupArray array 4D array to display in popup menu

— menuPackRef longint Reference to a MenuPack menu

AL_SetEnterable is used to set the enterability of a column.

columnNumber — This parameter specifies what column to act on. If columnNumber is 0,
then all columns will be affected.

enterability — This parameter specifies the methods of enterability for columnNumber:

Value | Description
0 Not enterable
Enterable using typed characters only (default)

Enterable using popup menu only
Enterable using both typed characters and popup menu
Enterable using popup menu only (no meta characters)

G| h|[WIN|—

Enterable using both typed characters and popup menu (no meta characters)

You can use enterability 4 or 5 to control meta charaters for a given column. If you wish to define
the meta character functions globally, use the routine AL SetInterface (metaOption parameter).

When using the enterability values 4 and 5, you can override the default setting configured by
AL_SetInterface for a given area. Therefore, if you wish to configure Arealist Pro to globally disable
meta characters for popup controls, you can do so using AL_SetInterface, then enable for a given
column using AL_SetEnterable.

popupArray — Array, integer, longint, real, string or text. This array will be displayed in the popup
menu and must be the same type as the array or field displayed in columnNumber.

Exiting Data Entry - AL_SetEnterable

171

Enterability

If it is not the same type or if it has no elements, then a menu containing a single disabled menu item
with the text “No items in this menu” will be displayed.

An array is not needed to display a time or date popup menu; built-in menus are provided.

Columns containing boolean or picture arrays can not contain popup menus.

Do not dispose of the array in 4D until the popup is no longer needed.

menuPackRef — This parameter passes the reference obtained from the MenuPack/PopupPack
plug-in. Please refer to the “Using PopupPack Popup Control with AreaList Pro” and “Using PopupPack
Offscreen Popup Control with AreaList Pro” sections in the MenuPack Developer Reference manual.

If this parameter is not passed, then the values in popupArray will be displayed in an AreaList Pro popup.

When the user selects an item from the MenuPack menu, the entry finished callback method is run.
In this callback the appropriate MenuPack commands must then be called to determine the user’s
selection. Then the user’s selection must be placed in the array element corresponding to the cell
entered.

If this command is called in the On Plug in Area event phase or in the Event Callback Interface
method, use AL_UpdateArrays or AL_UpdateFields to redraw the AreaList Pro object as needed.

See Using Callback Methods During Data Entry for a discussion of using callback methods with
popup menus.

If this command is not called, then all columns will be enterable using typed characters only.

Examples:

AL SetEnterable (elist;4;1) “set column 4 to be enterable using typed characters only
AL _SetEnterable (elist;0;0) “set all columns to be not enterable

AL _SetEnterable (elist;3;2;aProducts) “set the third column to be enterable via a popup menu
containing the items in the array aProducts

The following example will disable meta characters globally, for all ArealList Pro areas:

AL_Setinterface(0;-1,-1;-1;1) "0 as area parameter defines for all Arealist Pro areas

Then, you can enable meta characters for a given column in a specific area:
AL SetEnterable (elist;2;2;atTest)

AL_SetEnterable 172

Enterability

If the data type is time or date, AL SetInterface is also used to specify the interface to be used:

Whenever a cell is enterable with popup, the useOldPopup parameter of AL Setinterface sets

what kind of popup will be used (old or new). See Data Entry Using Popups for more details.

Whenever a cell is enterable with typing, the entryControls parameter of AL Setinterface sets if
the entry is performed using plain text of inline controls. See Data Entry Using Inline Controls for

more details.
These settings can be restricted (but not expanded) with AL SetCellEnter.

AL_SetFilter

(areaRef:L; columNumber:l; entryFilter:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column where to apply filter

— entryFilter string Filter for input data

AL_SetfFilter is used to set the entry filter for a column.

columnNumber — This parameter specifies the column to act on. If columnNumber is 0, then all
columns will be affected.

entryFilter — This parameter specifies the filter to use. Entry filters will function as they do in
4™ Dimension, except that they will not handle placeholders. Predefined styles may not be used.

Please read the section Filters for more information.

Examples:

AL _SetfFilter (elist;3;"&9") *column 3, allow numbers
AL_SeffFilter (elist;6;"~a") *column 6, allow lower and uppercase, make all uppercase
CapsFilter:="~"+Char (34)+"A-Z;a-z;0-9;.;0;/;*:(;);&;$;\;"+Char (34)

AL_SeffFilter (elist;4;CapsFilter) *column 4, allow multiple groups and several individual characters

AL_SetEnterable - AL_SetFilter

173

Enterability

AL_SetEntryOpts

(areaRef:L; entryMode:l; allowReturn:l; displaySeconds:I; moveWithArrows:I; mapEnterKey:l;
decimalCharForWin:S; useNewPopuplcon:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

— entryMode integer Mode to initiate entry

— allowReturn string Allow entry of carriage returns into text arrays
— displaySeconds integer Display seconds in time arrays during data entry
— moveWithArrows integer Move enterable cell using the Arrow keys

— mapEnterKey integer Map the Enter key to function as another key
— decimalCharForWin string Decimal character under 4D for Windows

— useNewPopuplcon integer Display modern popup icon

AL_SetEntryOpts is used to control several ArealList Pro options pertaining to data entry. Please read the
section Moving the Current Entry Cell for more information.

entryMode — 0 to 7 (8 to 15 to ignore soft deselect). This option determines the mode that the user
can use to initiate data entry and select rows with the mouse. The table below describes the possible
values. The default is 1.

Value | Entry Selection

0 None Single-click

1 None Single and double-click
2 Single-click None

3 Double-click Single-click

4 <ctrl/command> Double-click | Single and double-click
5 <shift>=Double-click Single and double-click
6 | <option/alt> Double-click Single and double-click
7 <control>Double-click Single and double-click

To ignore soft deselect events (e.g. clicking on non-focusable button) add 8 to the entryMode parameter.

See the sections Compatibility Note — New Menu Architecture and Compatibility Note — AL ExitCell
and AL Cell deselect action become AL ExitCell and AL Cell Validate for details about “hard deselect”
and “soft deselect”.

The following example will configure area to ignore soft deselect events:

AL_SetEntryOpts (elist; 10;...) singleclick to initiate entry, no row selection, ignore soft deselect

AL_SetEntryOpts 174

Enterability

allowReturn — 0 or 1:

0 — the Carriage Return key will move the enterable cell as described in the
Moving the Current Entry Cell (default)

1 — the user can enter a carriage return character into a text array element

displaySeconds — 0 or 1:
0 — seconds will not be displayed (default)
1 — seconds will be displayed in time array elements during data entry

moveWithArrows — 0 or 1:

0 — the Arrow keys will move the insertion point within the enterable cell (default)
1 — the Arrow keys will move the enterable cell to the next cell according to the key pressed

mapEnterKey — The Enter key is in many cases used to accept a record or perform some other action
in 4D. If the Enter key is not acting as expected, make sure that it is not being used as a key equivalent
somewhere on the layout.

0 — do not map the Enter key (default)
1 — map the Enter key to act like the Tab key
2 — map the Enter key to act like the Return key

decimalCharForWin — Character to be interpreted as the decimal point. Only the first character
of decimalCharForWin is used for the decimal point, any other characters will be ignored. The default

is the US decimal point ".".

decimalCharForWin applies only to Arealist Pro running under 4D for Windows. On MacOS, when a
real number is entered into a cell during data entry, MacOS converts the text entered into a real number
(after exiting the cell). MacOS takes into account the decimal point set in the International preferences.
This feature is not available under all versions of Windows.

useNewPopuplcon — 0 or 1:
0 — all popup icons will have the old black and white look (default)
1 — all popup icons will have a 3D look

Examples:

“Initiate data entry with a double-click, single-click selection, don't allow carriage return characters to be
entered into text arrays, don’t display seconds in time arrays during data entry, map the Enter key to act
like the Tab key, modern popups

AL SetEntryOpts (elist;3,0;0,0;1;".";1)

‘Initiate data entry with a singlelick, no selection, allow carriage return characters to be entered into text

arrays, display seconds in time arrays during data entry, use Arrows to navigate between cells,
black and white popups

AL_SetEntryOpts (elist;2;1;1;1;0;".";0)

AL_SetEntryOpts 175

Enterability

AL_SetEntryCtls

(areaRef:L; columnNumber:l; controlType:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— columnNumber integer Column in which control appears

— controlType integer Type of control

AL_SetEntryCtls is used to specify which type of control will be used for data entry in a column
displaying a boolean array. If the column contains any other type of array, this command will be
ignored.

columnNumber — This parameter specifies the column to act on.

controlType — 0 or 1:
0 — checkbox without title (default)
1 — checkbox with title (the title is the True label specified in AL SetFormat)

AL_SetCellEnter
(areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X; enterability:1)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— firstCellCol integer First cell column

— firstCellRow longint First cell row

— |astCellCol integer Last cell column

— lastCellRow longint Last cell row

— cellArray two-dimensional longint array Discontiguous cells

— entferability integer Enterability

AL_SetCellEnter is used to set the enterability of a specific cell, range of cells, or list of cells.
To specify a single cell. If firstCellCol and firstCellRow are greater than 0 and lastCellCol
or lastCellRow are less than or equal to 0 then only [firstCellCol, firstCellRow] will be set.

To specify a range of cells. If firstCellCol and firstCellRow are greater than 0 and lastCellCol
and lastCellRow are greater than 0 then the range of cells from [firstCellCol, firstCellRow] to
[lastCellCol, lastCellRow] will be set.

To specify discontiguous cells. If firstCellCol or firstCellRow are less than or equal to 0
then the cells in cellArray will be set.

AL_SetEntryCtls - AL_SetCellEnter 176

Enterability

cellArray — Two-dimensional long integer array. The first dimension must be two. The first array is for
the column indices and the second array is for the row indices. The second dimension must be the same
as the number of cells that are to be selected. See the following illustration.

cellArray
lof1]2]
v v

0 0
Cell1]1 1
CeI||2 2 2

1
Celln|n n
Column Row

enterability — 0, 1,2, 3 or -1:
0 — the cell is not enterable

1 — the cell is enterable by typing or popup, according to the enterability parameter of
AL SetEnterable for the column

2 — the cell is enterable by popup only, if the enterability parameter of AL SetEnterable for the
column is set accordingly
3 — the cell is enterable by typing only, if the enterability parameter of AL SetEnterable for the
column is set accordingly

-1 — remove any cell-specific enterability which has been set for the cells

The moveWithData option of AL_SetCellOpts controls whether cell enterability stays with a cell
whenever sorting, row dragging, or column dragging occurs.

Regarding enterability by popup, the popup is displayed in the cell if the column property is set as
such by AL SetEnterable, which defines if the column cells will be enterable with typing and/or popup.

If the column is set as enterable with typing and popup, before version 8.1 it was only possible to set
which cells were enterable (with both methods) or not (with none of the two methods). Values 2 and 3
of the enterability parameter now allow to set cells that will be enterable with popup or typing only. This
setting is only useful when the column property is enterable with both popup and typing.

Whenever a cell is enterable with popup, the useOldPopup parameter of AL Setinterface sets
what kind of popup will be used (old or new). See Data Entry Using Popups for more details.

Whenever a cell is enterable with typing, the entryControls parameter of AL Setinterface sets if
the entry is performed using plain text of inline controls. See Data Entry Using Inline Controls for
more details.

AL_SetCellEnter 177

Enterability

Examples:
ARRAY LONGINT (aCellArray;2;0)

*Set the cell in the third column, first row, to be enterable
AL _SetCellEnter elist;3;1,0,0;aCellArray; 1)

“Set the cells in the fourth row (ten columns) to be non-enterable

‘the row number is the same for all the cells, just the column number changes: range of values
AL_SetCellEnter (elist;1;4;10;4;aCellArray;0)

“Set the cells in rows 8, 9, and 10, the first two columns, to be non-enterable
AL SetCellEnter (elist;1;8;2;10;aCellArray;0)

AL _GetCellEnter

(areaRef:L; cellColumn:l; cellRow:L; enterability:I)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— cellColumn integer Cell column

— cellRow longint Cell row

+ enterability integer Enterability

AL_GetCellEnter is used to determine if the enterability of the specified cell has been explicitly set with
AL SetCellEnter.

Note that AL_GetCellEnter will not get the column enterability.

enterability — 1, 0 or -1:
1 — the cell is enterable by typing
0 — the cell is not enterable by typing
-1 — the cell’s enterability has not been previously set for the cell

AL_SetCellEnter - AL_GetCellEnter 178

Enterability

AL_GetCellMod

(areaRef:L) = resultCode:L

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
« resultCode longint Result code

AL_GetCellMod will report whether or not the contents of the cell have been modified.
Use this command in the entryFinishedMethod callback.
Please read the section Executing a Callback Upon Leaving a Cell for more information.

resultCode — This parameter reports whether or not a cell was modified:
0 — not modified
1 — modified

Example:

If (AL_GetCellMod (elist)=1) was the value modified?

AL_GetCurrCell(elist;vCol;vRow)

If (vCol=5)"5th column is Line ltem quantity
aExtended{vRow}:=aQty{vRow}*aPrice{vRow}
AL_UpdateArrays (elist;-1)

End if

End if

AL _GetCellValue

(areaRef:L; cellRow:L; cellColumn:l; alphanumericData:T; pictData:P)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— cellRow longint Desired row

— cellColumn longint Desired column

+ alphanumericData text Non picture data

+ pictData picture Picture data

AL_GetCellValue will return the displayed value using the supplied row and column.

AL_GetCellMod - AL_GetCellValue

179

Enterability

If the value contained in the cell is a picture object, it will be returned in the picture data parameter,
otherwise the value will be returned in the non-picture data parameter.

cellRow — Desired row.
cellColumn — Desired column.

alphanumericData — Any non-picture data will be returned in this parameter, using any formatting
values if supplied (see AL_SetFormat).

pictData — Any picture data will be returned in this parameter.

The following example will extract the cell data for the 3 row, 2" column. The information returned
will be either text or picture:

C_TEXT ($tData)

C_PICTURE ($pData)

AL_GetCellValue (elist;3;2; $tData; $pData)

AL_SetCellHigh

(areaRef:L; startPosition:|; endPosition:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— startPosition integer First character of cell text to highlight

— endPosition integer Last character of cell text to highlight

AL_SetCellHigh will highlight a range of characters within a cell, from startPosition to endPosition-1.
When startPosition = endPosition, then the insertion point will be positioned prior to the character
indicated in startPosition, and none of the characters in the cell will be highlighted.

Example:

‘Entry finished callback:
If (Not (vDataValid))

AL_SetCellHigh (elist;vStart;vEnd) “highlight the cell contents to indicate error
End if

AL_GetCellValue - AL_SetCellHigh 180

Enterability

AL_GetCellHigh

(areaRef:L; startPosition:|; endPosition:l)

Parameter
— areaRef

« startPosition

+— endPosition

AL_GetCellHigh will obtain the highlighted range of characters within a cell. This command may be

Type

longint
integer

integer

Description

Reference of Arealist Pro object on layout
First character of highlighted cell text

Last character of highlighted cell text

used to provide user feedback after performing error checking on entered data, and can be used in the

entry finished callback method. Please read the section Executing a Callback Upon Leaving a Cell for

more information. See AL SetCellHigh.

Al_GetCellHigh and AL_SetCellHigh also work during data entry (cell editing).

startPosition — This parameter indicates the first highlighted character.

endPosition — This parameter indicates the last highlighted character.

AL _SetCellicon

(areaRef:L; cellColumn:l; cellRow:L; pictRef:P; iconAlignment:I; horPosition:I; vertPosition:|;

offset:I; scaling:l)

Parameter

— areaRef

— cellColumn

— cellRow

— iconRef

— iconAlignment
— horPosition

— vertPosition
— offset

— scaling

Type

longint
integer
longint
longint
integer
integer
integer
integer

integer

Description

Reference of Arealist Pro object on layout
Column at which to set the icon

Row at which to set the icon

Reference of the icon or picture to use
Position of icon

Horizontal position

Vertical position

Pixel offset

Scaling

AL_GetCellHigh - AL_SetCelllcon

181

Enterability

AL_SetCelllcon provides the ability to procedurally place icons in individual cells.

One or two icons may be used (left and right). You can customize the icon(s) using “cicn” or “PICT”
resources, or items from the 4D Picture Library (see details below).

This call supersedes Escape sentence icons placed in cells (see Header/Cell Icon Support).

cellColumn — Desired cell column number.
cellRow — Desired cell row number.

iconRef — Reference of the icon or picture to use. Both “cicn” and “PICT” resources can be used, as
well as items from the Picture Library. To associate an icon to the cell, pass one of the following numeric
values (Use PICT resource and Use PicRef are 4D constants):

N, where N is the resource ID of Mac OS-based “cicn” resource
Use PICT resource + N, where N is the the resource ID of a Mac OS-based “PICT” resource

Use PicRef + N, where N is the reference number of a picture from the Design environment
Picture Library

pass zero (0) if you do not want any icon for the cell

See Header/Cell Icon Support for examples. See also the 4™ Dimension Language Reference regarding
the SET LIST ITEM PROPERTIES command, which uses the same icon syntax.

iconAlignment — Position of icon (each cell can contain up to two icons):
0 — places icon on left of cell
1 — places icon on right of cell

horPosition — One the following options:
0 — default (left for left icon, right for right icon)
1 — align left
2 — align center
3 — align right

vertPosition — One the following options:
0 — default (top)
1 — align top left
2 — align center
3 — align bottom

offset — offset of the “icon guide”. The horizontal position is relative to this position. If the horizontal
alignment is center, the icon is centered between the guide and corresponding side of cell (left for left
icon, right for right icon).

AL_SetCelllcon 182

Enterability

The picture below illustrates the icon guide and its offset:

icon guide

3
offset
ICON GUIDE AND OFFSET

In the picture below, the left icon is aligned right to the icon guide and the right icon is aligned left to
the icon guide:

LEFT ICON ALIGNED RIGHT
RIGHT ICON ALIGNED LEFT

In the picture below, the left icon is centered between the left border and the icon guide and no right
icon is used:

LEFT ICON CENTERED

scaling — One the following options:
0 — truncated
1 — scaled

The cell content (text) is drawn into the space that is left once the icon is drawn. If the icon is larger than
the remaining available space, the text is drawn over the icon.

For example, if the column width is 100 pixels and you draw a 15 pixel icon, there is remaining width
of 85 pixels where the text will be drawn. If, however, the total width (icon + text) exceeds the column
width, the text will be drawn over the picture. This allows background pictures behind the text.

The following example will draw an icon in r3c2, using an item (resID 1717) from the Picture Library:

$col:=2

$row:=3

$iconRef:=1717+Use PicRef

$iconPos:=1 “right

$horPos:=0 “default

$verPos:=2 “align center

$offset:=5

$scaling:=0

AL_SetCelllcon (eAL_Output; $col; $row; SiconRef; $iconPos; $horPos; $verPos; $offset; $scaling)

AL_SetCelllcon 183

Enterability

AL GotoCell

(areaRef:L; cellColumn:l; cellRow:L)

Parameter Type

— areaRef longint
— cellColumn integer
— cellRow longint

Description
Reference of Arealist Pro object on layout
Column to move entry to

Row to move entry to

AL_GotoCell will place the cursor into the specified cell. If the cell does not exist or has been set to not
enterable by AL SetEnterable, then this command will have no effect.

If you use AL_GotoCell from an object method or project method other than the entry or exit callback
method, you must precede it with the 4D command GOTO AREA. This is because AL_GotoCell only

works if the AreaList Pro object is selected.

If AL_GotoCell is called in the On load phase, the ArealList Pro area must be the first in the entry order

for the layout.

cellColumn — This parameter specifies the cell’s column.

cellRow — This parameter specifies the cell’s row.

Example:

“Entry callback method
AL _GetCurrCell(eltems;vCol;vRow)
If (vCol=3) “unit price

If (gAccess#"Sales") “does user have security access fo this field?

If ($2=2) “Tab

AL_GotoCell(eltems;vCol+1;vRow) ‘goto the next cell

Else 'not Tab

AL _ExitCell(eltems) “end data entry

End if
End if
End if

AL_GotoCell 184

Enterability

AL GetCurrCell

(areaRef:L; cellColumn:l; cellRow:L)

Parameter Type

— areaRef longint
+ cellColumn integer
+ cellRow longint

Description
Reference of Arealist Pro object on layout
Cell column

Cell row

AL_GetCurrCell will return the currently enterable cell. This command is only valid from a callback
method. Please read the section Using Callback Methods During Data Entry for more information.

cellColumn — This parameter returns the current cell’s column number.

cellRow — This parameter returns the current cell’s row number.

AL_GetCurrCell will return 0 in both cellColumn and cellRow if there is not a cell being entered.

Example:

AL _GetCurrCell(elist;vColumn;vRow) “get the current cell

AL GetPrevCell

(areaRef:L; cellColumn:l; cellRow:L)

Parameter Type

— areaRef longint
+ cellColumn integer
+ cellRow longint

Description
Reference of Arealist Pro object on layout
Column where entry cell was located

Row where entry cell was located

AL_GetPrevCell will return the previously enterable cell.

cellColumn — This parameter returns the previous cell’s column number.

cellRow — This parameter returns the previous cell’s row number.

AL_GetCurrCell - AL_GetPrevCell

185

Enterability

AL_SkipCell

(areaRef:L)
Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout

AL_SkipCell will skip the current data entry cell and proceed to the next cell.

This command can only be called from the entry started callback method. Please read the section
Executing a Callback Upon Entering a Cell for more information.

If data entry in a cell is begun via a Tab, shift-Tab, Return, shift-Return, or click, then AL_SkipCell moves
data entry to the next appropriate cell, according to the entry method.

If the cell was entered via a mouse click, the cell will be exited and data entry will be ended.

If the cell was entered because of AL_SkipCell called from the previous cell, then data entry will
similarly be moved to the next cell.

If the method by which data entry begun is anything else, this command will be ignored.
Example:

“Entry Callback Method
AL_GetCurrCell(eltems;vCol;vRow)
If (vCol=3) “unit price
If (gAccess#"Sales") “does user have security access fo this field?
AL_SkipCell(eltems) "goto the next cell or end data entry
End if
End if

AL_SkipCell 186

Enterability

AL_ExitCell

(areaRef:L)
Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout

AL_ExitCell will exit the currently enterable cell. If there is not a cell being entered then AL_ExitCell
will have no effect.
AL_ExitCell does not need to be used to deselect a cell undergoing data entry if:

a menu is selected

another layout object is clicked

the user clicks elsewhere on the ArealList Pro object.
These cases will all terminate data entry normally without the use of this command, and the cell will
receive its normal exit callback.

AL_ExitCell is required, however, to terminate data entry from an entry callback method.

Warning: in an enterable area, the row containing the currently edited data must not be deleted.
AL_ExitCell must be called before the row (array element) is deleted.

See also Compatibility Note — New Menu Architecture and Compatibility Note — AL ExitCell and AL

Cell deselect action become AL ExitCell and AL Cell Validate for details about “hard deselect” and “soft

deselect”.
Example:

‘Entry callback method
“don’t allow entry into cell at column 3, row 4
AL_GetCurrCell(elist;vCol;vRow)
If ((vCol=3) & [vRow=4))
AL ExitCell elist)
End if

AL_ExitCell

187

Dragging Commands

Dragging Commands

Background

Technical Details of the Dragging Implementation
You must configure Arealist Pro to allow dragging out of and into an Arealist Pro area.

Commands provide the control necessary to allow dragging within an area, between two or more areas,
and to not allow dragging between certain areas.

To allow dragging out of AreaList Pro, you must pass an access “code” for the type of data that is to be
dragged. You must specify the type of data to allow to be dragged and at least one code to enable
dragging, using AL SetDrgSrc. Up to ten codes can be passed.

Allowing many codes provides for more flexibility in enabling and disabling dragging between various
areas. This will be explained in more depth later.

In order to allow dragging into ArealList Pro, you must pass an access “code” for the type of data that
can be the destination of a drag. You must specify the type of data that can receive a drag, and at least
one code to enable dragging, using AL SetDrgDst. Arealist Pro supports dragging to rows, columns,
and cells. As with AL_SetDrgSrc, up to ten codes can be passed for flexibility reasons.

To enable cell dragging, the cellSelection option of AL_SetCellOpts must be set to 1 or 2 (single cell
selection or multiple cells selection is enabled).

To drag a cell out of an AreaList Pro object, set the sourceDataType parameter of AL_SetDrgSrc
to 3 (AL Drag cell data type).

To drag data into an Arealist Pro object and drop it as a cell, set the destDataType parameter
of AL_SetDrgDst to 3 (AL Drag cell data type).

You can control the behavior of row dragging use the dragOntoRow parameter of AL_SetDrgOpts.
The two types of behavior are dragging to insert between two rows, or dragging onto a row.
When dragging onto rows, AreaList Pro will not automatically reorder displayed arrays.

What are access ‘“codes”?

The access codes that are passed in the AL_SetDrgSrc and AL_SetDrgDst commands are used to
enable dragging between specific drag partners. These drag partners can be the same ArealList Pro area,
different ArealList Pro areas, or different plug-in areas.

When a drag takes place, the drag sender communicates its access codes to the drag receiver. The drag
receiver will compare the access codes of the sender to its own codes. If any of the codes match, the drag
is allowed. This mechanism allows a number of combinations between several drag partners. The following
is an example of enabling the dragging of a row within the same ArealList Pro area.

Background 188

Dragging Commands

Example:

‘Enable drag events to rows within the this area

vSelfStr:=String (elist) ‘creates a unique code that only allows dragging within this area
AL_SetDrgSrc (elist; 1;vSelfStr) “row data type for source

AL SetDrgDst (elist; 1;vSelfStr) “row data type for destination

This example also shows how you can create a unique identifier that only enables dragging within the
same ArealList Pro area.

Arealist Pro will update the arrays and refresh the area if the drag is within the same area
(row-to-row or column-to-column).

After a drag

When a row, column or cell is dragged out of AreaList Pro, the following information is available to you:
notification that a drag occurred
which row, column or cell was dragged (index in array)

where the row, column or cell was dragged to (this area or another area)
When the drag is completed, the Arealist Pro event callback (or area’s object method) will run.

If a drag occurred, a $2 event code of -5 is returned to the callback method (or AL_GetlLastEvent
command, formerly ALProEvt variable) if a row was dragged, -7 if a column was dragged, or -8 if a cell
was dragged (see Determining the User’s Action on an ArealList Pro Object).

Then AL_GetDrgSrcRow or AL_GetDrgSrcCol may be used to get the row, column or cell that was dragged.

To determine which plug-in area was the destination of the drag, call AL_GetDrgArea. This command
returns the areaRef (a long integer) and the process ID of the destination area, which may be the same
Arealist Pro area, another ArealList Pro area, or another plug-in area.

When dragging to another object, that object can either reside in the same window or on another
window, which may require use of 4D’s CALL PROCESS command to take action on the drag — when
dragging to other objects, AreaList Pro is only providing a user interface to the drag, and notifying you,
the developer, that the drag has occurred.

You are responsible for manipulating any arrays or other data structures.

When an Arealist Pro area is the destination of a drag, the following information is available to you:
the type of data that was the recipient of the drag (row, column or cell)

the row, column or cell that was dragged to

Background 189

Dragging Commands

You must use AL_GetDrgDstTyp to determine if the destination of the drag was a row, column or cell:

if the destination was a row, AL_GetDrgDstRow may be used to determine the destination row

if the destination was a column, AL_GetDrgDstCol may be used to determine the destination
column

if the destination was a cell, then both AL_GetDrgDstRow and AL_GetDrgDstCol are used to
determine the destination cell

If the destination of the drag is an area on another window, then you must use 4D’s CALL PROCESS
command to communicate to the other process.

Arealist Pro will update the arrays and refresh the area if the drag is within the same area (row-to-row
or column-to-column).

Row dragging is disabled when an ArealList Pro object is in cell selection mode. Use the moveWithData
option of AL SetCellOpts to keep the cell-specific information with a cell when a row or column is
dragged to a new location or the list is sorted.

When dragging cells, there will be no automatic updating of arrays, even if the source and the
destination lists are the same.

Arealist Pro on Multi-Page Layouts

You can place an ArealList Pro area on layouts that contain multiple pages. If you've configured
the area to accept a drag from another area, you must enable and disable the AreaList Pro area using
AL SetDrgDst, depending on whether the area is on the current page.

If the page containing the ArealList Pro area is not the current page, call AL_SetDrgDst with empty
strings for the dstCode parameters. When the page becomes current, call AL_SetDrgDst with the actual
dstCode values you wish to allow.

Please read the section Drag and Drop — Changing Form Pages for more information.

You should always disable an Arealist Pro area which is not on the current layout page.

Multiple Rows Dragging

To enable multiple rows dragging, the following options must all be set as follows:

the cellSelection option of AL_SetCellOpts must be set to 0 (row selection is enabled)
the multiRows option of AL_SetRowOpts must be set to 1 (multiple rows selection is enabled)

the multiRowDrag option of AL SetDrgOpts must be set to 1 to enable multiple rows dragging.

To get the rows that were dragged, use AL_GetSelect.

When dragging multiple rows, there will be no automatic updating of arrays, even if the source and
the destination lists are the same.

Background 190

Dragging Commands

Drag DataType

The dataType parameters represent the type of the drag for both the source and the destination.
They are used in the commands AL SetDrgSrc, AL SetDrgDst, and AL_GetDrgDstTyp.
These are the possible values:

1 —row
2 — column
3 — cell

Drop Area

Arealist Pro includes a Drop Area object, which can be used as a destination for dragged rows and
columns.

Commands

AL_SetDrgSrc
(areaRef:L; sourceDataType:l; srcCodel:S; ...; srcCode10:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— sourceDatalype integer Type of item dragged

— srcCodel; ...; srcCode10 string Used to match drag partners

AL_SetDrgSrc is used to enable dragging out of the Arealist Pro object referenced by areaRef, by
setting the access codes for the source of the drag.

This command must be called before a drag is initiated (usually in the On load phase). Please read the

section What are access “codes”? for more information.

sourceDataType — Possible values are:
1T — row
2 — column
3 — cell

srcCode — 15 characters. The srcCode can have any value, such as “RowDrag”, “ColDrag”,
“DragToALP”, etc.; however, it is meant to match a code passed into a potential drag partner.
The drag partner will be the destination/receiver of the drag.

That destination can be the same Arealist Pro area, a different ArealList Pro area, or another object.

Background - AL_SetDrgSrc

191

Dragging Commands

This code can be any value other than an empty string. Avoid using the strings “TEXT” or “PICT".

Arealist Pro performs the following logic during the actual drag: when the drag takes place, the source
codes that were given in srcCodel, srcCode?2, etc. will be communicated to the receiver of the drag.
If any of the codes match, the drag is enabled.

See What are access “codes”?

Example:

‘Enable dragging a row within this area

vSelfStr:=String (elist) ‘creates a unique code that only allows dragging within this area
AL_SetDrgSrc (elist; 1;vSelfStr) “row data type for source

AL_SetDrgDst (elist; 1;vSelfStr) ‘row data type for destination

AL_SetDrgDst
(areaRef:L; destDataType:l; dstCodel:S; ...; dstCode10:S)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— destDataType integer Data type to be received

— dstCodel; ...; dstCodel0 string Access code(s) to be received

AL_SetDrgDst is used to enable dragging into the destination area, by setting the access codes.
Please read the section What are access “codes”? for more information.

This command must be called before a drag has occurred.

The areaRef parameter must be the destination (receiver) area of a drag.

destDataType — Possible values are:
1T —row
2 — column
3 — cell

For the data type specified by destDataType (either row, column, or cell), you must specify at least one
dstCode to enable receiving of that type.

dstCode — 15 characters. The dstCode can be any value (other than an empty string), such as “Row-
Drag”, “ColDrag”, “ALPDrag”, “PartNum”, etc. Avoid using the strings “TEXT” or “PICT”. Pass an empty
string to disable dragging.

The code should be the same as what is passed into a potential drag partner. The drag partner will be the
source/sender of the drag. The source area can be the same Arealist Pro area, a different ArealList Pro
area, or another plug-in object.

AL_SetDrgSrc - AL_SetDrgDst 192

Dragging Commands

Arealist Pro performs the following logic during the actual drag: when the drag takes place,
the destination codes that were given in dstCode1, dstCode2, etc. are compared to the source codes
communicated by the sender of the drag. If any of the codes match, the drag is enabled.

See Technical Details of the Dragging Implementation.

When Arealist Pro is placed on a page in a multi-page layout, be sure to disable dragging using this
command when that page is not the currently shown page. Please read the section Arealist Pro on

Multi-Page Layouts for more information.

Example:

‘Enable dragging a row within this area

vSelfStr:=String (elist) ‘creates a unique code that only allows dragging within this area
AL_SetDrgDst (elist; 1,vSelfStr) “row type for destination

AL_SetDrgOpts

(areaRef:L; dragRowWithOptKey:|; scrollAreaSize:l; multiRowDrag:l; dragOntoRow:l)

Parameter Type

— areaRef longint
— dragRowWithOptKey integer
— scrollAreaSize integer
— multiRowDrag integer
— dragOntoRow integer

Description

Reference of Arealist Pro object on layout
Drag row using the option/alt key

Size of area that will activate scrolling
Enable multiple rows dragging

Drag rows onto or between rows

AL_SetDrgOpts is used to set various options to be used with dragging.

Call this command before a drag.

dragRowWithOptKey — 0 or 1:

0 — the user can drag a row by clicking on it without holding down the option/alt key (default)
1 — the user can drag a row by clicking on it while holding down the option/alt key

AL_SetDrgDst - AL_SetDrgOpts 193

Dragging Commands

scrollAreaSize — 0 to 30. This is the number of pixels outside of the destination area rectangle
that will cause scrolling when the cursor is over it (see the illustration below). If scrollAreaSize is 0, then
no scrolling will occur. The default is 30.

Source Destination

First | Last | | First Last | |
Dave Carlick A Mike EricRson A
Rich Gross v Barbara Anderson v
Ed Cheffetz Samir Arora i
Daniel Cheifetz m Mike Bailey |
Doug Clapp Sharon Jones |
Don Clark Rick Barron |
Raines Cohen Jim Bartimo |
Chris Colburn Bill Coldrick |
Bill Coldrick Fandy Battat

Debi Coleman Lofty Becker L
Bud Colligan Gregory Berkin

Rick Coombs Steve Bobker e
Lou Gehrig Ed Bogas ¥

THE SCROLLAREASlZE IS CALCULATED FROM THIS DESTINATION AREA RECTANGLE WHEN RECEIVING A DRAG INTO A ROW

multiRowDrag:
1 — enable multiple rows dragging
0 — disable multiple rows dragging (default)

With multiple rows dragging, the arrays or records will not be automatically updated even if the
source and destination lists are the same. See Multiple Rows Dragging for more information.

dragOntoRow:
1 — a row will be highlighted to receive the drag
0 — an insertion arrow will be displayed between rows (default)

When dragging a row onto a row, there will be no automatic updating of arrays, even if the source and
the destination lists are the same.

Example:

"Drag row without the option key, scroll in 10 pixel area, drag multiple rows, drag between rows
AL_SetDrgOpts (elist;0;10;1;0)

AL_SetDrgOpts 194

Dragging Commands

AL_GetDrgSrcRow

(areaRef:L; sourceRow:L)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ sourceRow longint Row that was dragged

Use AL_GetDrgSrcRow to determine which row or cell was dragged after a drag has completed.
The areaRef parameter should be the source (sender) area of a drag.

This command is called from the source area’s object method when an event code of -5 (user dragged
row) or -8 (user dragged cell) is returned to the callback method (or AL _GetlLastEvent command,
formerly ALProEvt variable).

See Determining the User’s Action on an Arealist Pro Object.

sourceRow — This parameter returns the row that was dragged.

Example:

“Event callback method
C_LONGINT ($0) “object method and form method will not be executed if O
C_LONGINT ($1) *Arealist Pro area
C_LONGINT ($2) ‘Arealist Pro event
C_LONGINT ($3) “event modifier
C_LONGINT ($4) “column — last clicked column
C_LONGINT ($5) ‘row — last clicked row
C_LONGINT ($6) ‘modifiers
C_STRING (255;$7) “tip string
C_STRING (255;$8) “area name
C_LONGINT (vRow)
Case of
:($2=-5) “user dragged a row
AL_GetDrgSrcRow ($1;vRow)
‘now do something useful

End case

AL_GetDrgSrcRow 195

Dragging Commands

AL_GetDrgSrcCol

(areaRef:L; sourceCol:l)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ sourceRow integer Column that was dragged

Use AL_GetDrgSrcCol to determine which column or cell was dragged after a drag has completed. The
areaRef parameter should be the source (sender) area of a drag. This command is called from the source
area’s object method when an event code of -7 (user dragged column) or -8 (user dragged cell) is returned
to the callback method (or AL_GetlLastEvent command (formerly ALProEvt variable). See Determining the
User’s Action on an Arealist Pro Object.

sourceCol — This parameter returns the column that was dragged.

Example:

“Event callback method
C_LONGINT ($0) “object method and form method will not be executed if 0
C_LONGINT ($1) "Arealist Pro area
C_LONGINT ($2) ‘Arealist Pro event
C_LONGINT ($3) “event modifier
C_LONGINT ($4) “column — last clicked column
C_LONGINT ($5) ‘row — last clicked row
C_LONGINT ($6) ‘modifiers
C_STRING (255;$7) “tip string
C_STRING (255;$8) “area name
C_LONGINT (vCol)
Case of
:($2=-7) “user dragged a column
AL_GetDrgSrcCol ($1;vCol)
‘now do something useful

End case

AL_GetDrgSrcCol 196

Dragging Commands

AL_GetDrgArea

(areaRef:L; destArea:L; destProcessID:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ destArea longint ID of the area the item was dragged to

+ destProcessID integer Process ID of the destArea

Use AL_GetDrgArea to determine the destination area of the last drag. The areaRef parameter should be
the source (sender) area of a drag.

This command is called from the source area’s object or form method (or event callback) when an event
code of -5, -7, or -8 (user dragged a row, column or cell) is returned to the callback method
(or by AL_GetlLastEvent command, formerly ALProEvt variable).

See Determining the User’s Action on an Arealist Pro Object.

destArea — This parameter is the area reference of the area that is the destination of the drag.

destProcessID — This parameter contains the Process ID in which the window and destination area
reside. Use the 4D command CALL PROCESS and the form event On Outside call for interprocess
communication.

If the destProcessID is different from the current process, you will need to use the 4D command
CALL PROCESS and the form event On Outside call to communicate to the window that contains the
destination area.

Example:

‘Event callback method

C_LONGINT ($0) “object method and form method will not be executed if O
C_LONGINT ($1) "Arealist Pro area
C_LONGINT ($2) *Arealist Pro event
C_LONGINT ($3) “event modifier
C_LONGINT ($4) “column — last clicked column
C_LONGINT ($5) ‘row — last clicked row
C_LONGINT ($6) “modifiers

C_STRING (255;$7) “tip string

C_STRING (255;$8) “area name

C_LONGINT (vDstArea;vDestID;vRow)

AL_GetDrgArea 197

Dragging Commands

Case of
:($2=-5) “user dragged a row
AL_GetDrgSrcRow ($1; vRow)
AL_GetDrgArea ($1;vDstArea;vDstID)
If (vDstID#Current process) 'if dragged to a different process
(vDstArea:=vDstArea ‘store in interprocess variable
CALL PROCESS [vDstD)
End if
End case

AL_GetDrgDstTyp
(areaRef:L; destDataType:|)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ destDataType integer Type of data which was destination of drag

AL_GetDrgDstTyp is used to determine the type of data that was the destination of the last drag.

Specifically, the user may drag items to either a row, column, or a cell. After the drag has completed,
AL_GetDrgDstTyp indicates whether the destination of the drag was a row, column, or a cell.

The areaRef parameter should be the destination (receiver) area of a drag.

If the destination and source areas are actually the same area or different areas within the same process
(i.e., they reside on the same layout), this command may be called from the source area’s object or form
method (or event callback).

If the destination and source areas are in different processes, then you will need to use the 4D command
CALL PROCESS and the form event On Outside call and interprocess variables to communicate between
the two processes.

destDataType — Indicates what type of data was the destination of the last drag:
1T —row
2 — column
3 — cell

AL_GetDrgArea - AL_GetDrgDstTyp 198

Dragging Commands

Example:

“Event callback method
C_LONGINT ($0) “object method and form method will not be executed if O
C_LONGINT ($1) "Arealist Pro area
C_LONGINT ($2) *Arealist Pro event
C_LONGINT ($3) “event modifier
C_LONGINT ($4) “column — last clicked column
C_LONGINT ($5) ‘row — last clicked row
C_LONGINT ($6) “modifiers
C_STRING (255;$7) “tip string
C_STRING (255;$8) “area name
C_LONGINT (vDstArea;vDestlD;vDstType;vRow)
Case of
:($2=-5) “user dragged a row
AL_GetDrgSrcRow ($1; vRow)
AL_GetDrgArea($1;vDstArea;vDstlD)
If (vDstArea=$1) “if dragged within the same area
AL_GetDrgDstTyp ($1;vDstType) "get the type of data that was destination of the drag
If (VDstTyp=1) "if dragged into a row
AL_GetDrgDstRow ($1;vRow) ‘get the row number
End if
Else "dragged to a different area
(vDstArea:=vDstArea ‘store in interprocess variable
CALL PROCESS vDsfD)]
End if
End case

‘Destination Arealist Pro eDstALP area layout's form method
C_LONGINT (vRow;vDstType)
Case of
:(Form event= On Outside call) *outside call [via CALL PROCESS)
If (\vDstArea=eDstALP) “has a drag occurred from another process into this Arealist Pro object
AL_GetDrgDstTyp (eDstALP;vDstType) ‘get the type of data that was destination of the drag

If (VDstTyp=1) "if dragged into a row
AL_GetDrgDstRow (eDstALP;vRow) “get the row number
End if

End if

End case
AL_GetDrgDstTyp

199

Dragging Commands

AL_GetDrgDstRow

(areaRef:L; destRow:L)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ destRow longint Row number in area that was dragged to

If the destination of the last drag was a row or a cell (See AL_GetDrgDstTyp), use this command to deter-
mine which row or cell was the destination of the last drag. The areaRef parameter should be the desti-
nation (receiver) area of a drag.

If the destination and source areas are actually the same area or different areas within the same process
(i.e., they reside on the same layout), this command may be called from the source area’s object or form
method (or event callback).

If the destination and source areas are in different processes, then you will need to use the 4D command
CALL PROCESS and the form event On Outside call and interprocess variables to communicate between
the two processes.

destRow — This parameter returns the row number of the destination area which received the drag.

See the AL_GetDrgDstTyp example above.

AL_GetDrgDstCol
(areaRef:L; destCol:l)

Parameter Type Description
— areaRef longint Reference of ArealList Pro object on layout
+ destCol integer Column number in area that was dragged to

If the destination of the last drag was a column or a cell (See AL_GetDrgDstTyp), use this command to
determine which column or cell was the destination of the last drag. The areaRef parameter should be
the destination (receiver) area of a drag.

If the destination and source areas are actually the same area or different areas within the same process
(i.e., they reside on the same layout), this command may be called from the source area’s object or form
method (or event callback).

If the destination and source areas are in different processes, then you will need to use the 4D command
CALL PROCESS and the form event On Outside call and interprocess variables to communicate between
the two processes.

destCol — This parameter returns the column number of the destination area which received the drag.

AL_GetDrgDstRow - AL_GetDrgDstCol 200

Dragging Commands

Example:

“Event callback method
C_LONGINT ($0) “object method and form method will not be executed if O
C_LONGINT ($1) *Arealist Pro area
C_LONGINT ($2) ‘Arealist Pro event
C_LONGINT ($3) “event modifier
C_LONGINT ($4) “column — last clicked column
C_LONGINT ($5) ‘row — last clicked row
C_LONGINT ($6) “modifiers
C_STRING (255;$7) “tip string
C_STRING (255;$8) “area name
C_LONGINT (vDstArea;vDestID;vDstType;vCol)
Case of
:($2=-7) “user dragged a column
AL_GetDrgSrcCol($1; vCol)
AL_GetDrgArea ($1;vDstArea;vDstID)
If (VDstArea=$1) "if dragged within the same area
AL_GetDrgDstTyp ($1;vDstType) "get the type of data that was destination of the drag
If (vDstTyp=2) "if dragged into a column
AL_GetDrgDstCol ($1;vCol) "get the column number
End if
Else ‘dragged fo a different area
(vDstArea:=vDstArea ‘store in interprocess variable
CALL PROCESS (vDsfD)]
End if
End case

‘Destination Arealist Pro eDstALP area layout's form method
C_LONGINT (vCol;vDstType)
Case of
:(Form event= On Outside call) “outside call (via CALL PROCESS)
If ()vDstArea=eDstALP) ‘has a drag occurred from another process into this Arealist Pro object
AL_GetDrgDstTyp (eDstALP,vDstType) "get the type of data that was destination of the drag
If (VDstTyp=2) "if dragged into a column
AL_GetDrgDstCol (eDstALP;vCol) “get the column number
End if
End if
End case

AL_GetDrgDstCol

201

User Action Commands

User Action Commands

User interaction with an AreaList Pro object used to be handled in the During phase (On Plug in Area
event) of the object method or form method, with the deprecated postKey paramter and ALProEvt
process variable.

To accomplish this, you will most often use the various AreaList Pro commands from within this 4D
method, which will also contain the response to user actions such as single-clicks and double-clicks.

A newer solution is the AL_GetLastEvent command and also the event callback project method set by AL
SetEventCallback. See Event Callback Interface and Event Callback vs Object Method.

Arealist Pro’s PostKey

In response to user activity, when using 4D 2003 and older versions, AreaList Pro had to send a message
to 4D by posting a keyboard event to the event queue to trigger the object method or form method’s
execution in the During phase (On Plug in Area).

The default keyboard event is command/ctrl-\. You can modify this key with the postKey parameter
of AL SetMiscOpts.

This is no longer the case with 4D 2004 and above.

Determining the User’s Action
on an Arealist Pro Object

The type of user action that triggered the execution of the callback project method is returned by
Arealist Pro to either of the two methods, according to the flag parameter of AL SetEventCallback:

in the AL_GetLastEvent command (formerly ALProEvt process variable), to be used by the
area’s form or object method

in the $2 parameter of the event callback method

Arealist Pro’s PostKey - Determining the User’s Action on an Arealist Pro Object 202

User Action Commands

The possible values are:

Constant Value | User Action

AL Null event 0 | No action

AL Single click event 1 | Single-click

AL Double click event 2 Double-click (see note below)

AL Empty Area Single click 3 |Single-click in an empty part of the area (without displayed data)

AL Empty Area Double click 4 | Double-click in an empty part of the area (without displayed data)

AL Single Control Click 5 Control-click (or right mouse click)

AL Empty Area Control Click 6 | Control-click (or right mouse click) in an empty part of the area
(without displayed data)

AL Vertical Scroll Event 7 | Vertical scroll

AL Mouse moved event 18 | Mouse moved (see note below)

AL Sort button event -1 | Sort button

AL Select all event -2 | Edit menu Select All

AL Column resize event -3 | Column resized

AL Column lock event -4 | Column lock changed

AL Row drag event -5 | Row dragged

AL Sort editor event -6 | Sort editor

AL Column drag event -7 | Column dragged

AL Cell drag event -8 | Cell dragged

AL Obiject resize event -9 | Object and window resized

AL Column click event -10 | User clicked on column header, automatic sort won’t be executed

AL Column control click event | -11 | Control-click on column header (see note below)

AL Footer click event -12 | Click on column footer

Example

Typically, you will use the If...End if or Case of...End case commands to check the value of
$2/ AL _GetLastEvent command (formerly ALProEvt variable) .

If you had configured an ArealList Pro object to respond to both single and double-clicks, you might use
a method like this in the event callback:

Case of
:($2=1) *Single-click

:($2=2) *Double-click
:($2=3) *Singlelick in an empty part of the area (without displayed data)
:($2=4) "Double-lick in an empty part of the area (without displayed data)

:($2=5) *Controlclick (or right mouse click)

Determining the User’s Action on an Arealist Pro Object 203

User Action Commands

:($2=6) *Control<lick (or right mouse click) in an empty part of the area (without displayed data)
:($2=7) *Vertical scroll

:($2=18) "Mouse has been moved (callback method only)

:($2=-1) “Sort button

:($2=-2) “Edit menu Select All

:($2=-3) *Column resized

:($2=-4) "Column lock changed

:($2=-5) "Row has been dragged from this area

:($2=-6) “User has invoked Arealist Pro Sort Editor

:($2=-7) *Column has been dragged from this area

:($2=-8) “Cell has been dragged from this area

:($2=9) "Object/window has been resized

:($2=-10) “User clicked on column header, automatic sort won't be executed
:($2=-11) *Control-click on column header

:($2=-12) *Click on column footer

End case

Mouse Moved Event
18 (mouse moved) is only available in the Event Callback Interface.

It is NOT available through AL GetlLastEvent command (formerly ALProEvt variable).

Single-click and Double-click Events

If a single-click is reported by AreaList Pro (event code 1), and the area is in single-row mode, you

can determine whether the event was caused by a mouse click or by a keyboard event (the Arrow key
or type-ahead scrolling). Both AL_GetColumn and AL_GetClickedRow will return zero if the event was
due to an Arrow key or type-ahead scrolling.

A user double-click will not cause a call to the event callback method if the ArealList Pro object is
configured to be enterable, and the selected data entry method is via a double-click.

If some of the columns are not enterable, a double-click on them will result in a single-click event.

Please read the section Initiating Data Entry for more information.

Determining the User’s Action on an Arealist Pro Object 204

User Action Commands

Ctrl/command-click in the Column Header Event
The following actions will trigger a -11 event report without displaying the ArealList Pro Sort Editor:

Windows right click
MacOS ctrl-click
MacOS right click

Windows ctrl-click and MacOS command-click won't report any event, but will trigger the display of
the Arealist Pro Sort Editor if the value of allowSortEditor is set to 1 in AL SetSortOpts.

See the section about this parameter.

Event Callback vs Object Method

The flag parameter in AL SetEventCallback and the $0 result returned by the event callback project method
determine if the object method (and form method) should be executed.

Object Methods (or Project Methods) — On Plug in Area Event

When 4D executes an area object method of form method, neither 4D nor Arealist Pro is executing,
which means that all AreaList Pro commands, all 4D commands and variables are available .

The developer may do whatever he wishes. 4D will redraw the Arealist Pro area once the method has
completed its execution. This is the secure and least problematic place where to place the code.

A limitation is that some events do not trigger the object method or project method execution. Another
limitation is that no arguments (parameters) can be passed from or to the method.

Event Callbacks

Area callbacks -event, entry and exit- are executed immediately after the event is received, often before
this event is (fully) processed. They can receive parameters and modify ArealList Pro behavior.

However, when the the callback is executed, 4D and ArealList Pro may be still processing the event, and
some Arealist Pro and 4D commands are ignored. This is a more advanced feature and the developer
should understand what is he doing. You need to watch carefully any modification of the data that is
displayed by AreaList Pro. We try to ensure that at least AreaList Pro does not crash if the developer does
something he should not, but some careless code can still get AreaList Pro into an “undefined state”.

A good example is deleting row(s): if AreaList Pro has begun to process an event for a row and that row
is then deleted in the callback method, once the execution returns from callback to AreaList Pro code,

Arealist Pro proceeds with event processing, even though the row no longer exists. This may lead to an
odd behavior.

Determining the User’s Action on an Arealist Pro Object - Event Callback vs Object Method 205

User Action Commands

Using Both Methods

Event callback methods and object/form methods can be combined in specific cases. Communication
between these code sets can be performed by saving the parameters passed to the event callback to 4D
variables in the callback method, and then retrieve the values from these process variables in the area
object method and/or the layout form method.

Selection

You can determine what row or rows are selected using AL_GetLine if in single-row selection mode,
and AL_GetSelect if in multiple rows selection mode.

If you are in cell selection mode, you can use AL_GetCellSel to determine the selected cells.

AL GetClickedRow returns the last row that was clicked, which is different from AL_GetLine (returns
selected row).

Sort Order

The user can change the sort order using the sort button (the column headers) or the Sort Editor.
You can determine this sort order using AL_GetSort.

Column Widths

The user is able to resize the columns by clicking and dragging the dividing lines between columns.
You can use AL_GetWidths to get the width of each column, in pixels.

Column Information

AL GetColumn is available to determine the column where a click occurred when selecting a row.

ArealList Pro allows one or more columns to be “locked” for horizontal scrolling.

If the allowColumnLock parameter of AL_SetColOpits is set, the user can change the column locked (see
Column Locking).

You can determine the position of the column lock using AL_GetColLock.

Event Callback vs Object Method - Selection - Sort Order - Column Widths - Column Information 206

User Action Commands
Commands

AL GetWidths

(areaRef:L; columnNumber:l; numWidths:I; width1:1; ...; widthN:l)

Parameter Type

— areaRef longint
— columnNumber integer
— numWidths integer
—width1; ...; widthN integer

Description

Reference of Arealist Pro object on layout
First column to get the width of

Number of widths to get (up to 15)

Pixel width of column

AL_GetWidths is used to get the widths of the columns to allow any user changes to the column
widths to be saved for future use. Up to fifteen widths can be retrieved at a time. Use AL_SetWidths to
override the automatic column width sizing and set the widths of a column.

columnNumber — This parameter specifies the first column to get the width of.

numWidths — This parameter specifies the number of widths to get. This value should be equal to the
number of variables passed for the width parameters.

width1; ...; widthN — These parameters return the pixel widths of the columns specified by

columnNumber and numWidths.
Example:

Case of

:(Form event=On load)

SEARCH ([Prefs]; [Prefs]User=Current user)

$error:=AL_SetArraysNam (elist;1;4;"a1";"a2";"a3";"a4") ‘display the list
AL_SetWidths (elist; 1;4;[Prefs|Col1;[Prefs]Col2;[Prefs]Col3;[Prefs]Col4) “get previous widths

:(Form event=On Validate)

AL_GetWidths (elist; 1;4;vColumn1;vColumn2;vColumn3;vColumn4) “get the current widths

[Prefs]Col1:=vColumn1
[Prefs]Col2:=vColumn2
[Prefs]Col3:=vColumn3
[Prefs]Col4:=vColumn4

SAVE RECORD ([Prefs]) “save widths in a preferences file for future use

End case

AL_GetWidths 207

User Action Commands

AL_GetSort

(areaRef:L; column1:l; ...; columnN:l)
Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ column1; ...; columnN integer Columns that sort was performed upon

AL_GetSort is used to return the current sort order.

column1; ...; columnN — These parameters return the column or columns that the user sorted.

A column greater than 0 means that the column is sorted in ascending order, while a column less than
0 means that the column is sorted in descending order. If a column is 0 then all subsequent columns
should be ignored.

When the user sort is bypassed by setting the userSort option of AL SetSortOpts to 2, AL_GetSort is still
used to get the column header that was clicked on. You can set the sort order using AL SetSort.

Examples:

‘Event callback method
C_LONGINT ($0) “object method and form method will not be executed if O
C_LONGINT ($1) *Arealist Pro area
C_LONGINT ($2) *Arealist Pro event
C_LONGINT ($3) “event modifier
C_LONGINT ($4) *column — last clicked columnNote
C_LONGINT ($5) ‘row — last clicked row
C_LONGINT ($6) ‘modifiers
C_STRING (255;$7) tip string
C_STRING (255;$8) area name
C_LONGINT (vSortCol;vCol1;vCol2;vCol3;vCol4;vCol5)
Case of
:($2=-1) “user clicked a sort button
AL_GetSort($1;vSortCol) “get the sorted column
End case
$Sorted:=AL_ShowSortEd($1) “display Arealist Pro Sort Editor
If ($Sorted = 1)
AL_GetSort($1;vCol1;vCol2;vCol3;vCol4;vCol5) “get the sort order
“do something here
AL _SetScroll($1;1;Abs (vCol1)) “scroll to the sorted column
End if

AL_GetSort 208

User Action Commands

AL GetSortedCols

(areaRef:L; sorilist:X)) = resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ sortlist longint array Column order list

+ resultCode longint Result code

AL_GetSortedCols returns the current sort column numbers displayed in the Sort Editor.
You should use this routine after displaying the ArealList Pro Sort Editor.

By default, the Sort Editor will always use what the user has selected in the sort column and previous
Sort Editor actions, unless you override the column list procedurally using AL SetSortedCols.

sortList — A valid 4" Dimension array (longint) which will receive the list of sort columns as displayed
in the ArealList Pro Sort Editor.

if the selected column was sorted in ascending order, the returned value will be positive

if the selected column was in descending order, the returned value will be negative

The following example will retrieve the Sort Editor column list:
$ret:=AL_ShowSortEd (elist)
If ($ret=1)
ARRAY LONGINT (aiAL_SortCollist;0)
$ret:=AL_GetSortCols (elist;aiAL_SortColList)
End if

AL GetColumn

(areaRef:L) = clickedColumn:l

Parameter Type Description
— areaRef longint Reference of ArealList Pro object on layout
« clickedColumn integer Column that the user clicked in

Use AL_GetColumn to find out what column the user clicked in.

AL_GetSortedCols - AL_GetColumn 209

User Action Commands

clickedColumn — This parameter returns the column that the user first clicked in (mouse-down).
Thus if the user clicks in column 5 and then drags the mouse and releases it in column 8,
the clickedColumn returned will be 5.

AL_GetColumn and AL_GetClickedRow routines should not be used in entry or exit callback methods
as it reports where the user has clicked, not where the cursor may reside. If you wish to get the
current row and column within exit callback, you should use AL_GetCurrCell.

Example:

$column:=AL_GetColumn (elist) "get the column clicked on

The column number is also available as parameter $4 in the event callback method.

AL GetClickedRow

(areaRef:L) = clickedRow:L

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ clickedRow longint Row that the user clicked in

Use AL_GetClickedRow (formerly AL_GetRow) to find out what row the user clicked in.

This command should not be confused with AL _GetlLine. AL_GetClickedRow returns the last row
that was clicked, while AL_GetLine returns the currently selected row, as a result of a click or any
other action.

clickedRow — This parameter returns the row that the user first clicked in (mouse-down).
Thus if the user clicks in row 5 and then drags the mouse and releases it in row 8, the clickedRow
returned will be 5.

AL GetColumn and AL_GetClickedRow routines should not be used in entry or exit callback methods
as it reports where the user has clicked, not where the cursor may reside. If you wish to get the
current row and column within exit callback, you should use AL_GetCurrCell.

AL_GetColumn - AL_GetClickedRow 210

User Action Commands

Example:
$row:=AL_GetClickedRow (elist) "get the row clicked on

The following example will return the selected column and row numbers (cell), then use the
AL _GetCellValue routine to return the associated data displayed in the selected cell, then use
AL SetCellValue to modify it:

Case of
:(Form event=On Plug in Areq)

$row:=AL_GetClickedRow (elist|
$col:-=AL_GetColumn (elist)
$ret:=AL_GetCellValue (elist; $row;$col;$sData)
$sData:="new value"
AL _SetCellValue (elist; $row;$col; $sData)
AL_UpdateArrays elist;-1)

End case

The row number is also available as parameter $5 in the event callback method

AL GetSelect

(areaRef:L; array:X) = resultCode:L

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
— array longint array Contains element numbers selected by the user when the

multi-rows option is enabled

+ resultCode longint Result code

AL_GetSelect is used to determine which items were selected by the user when the multiRows option of
AL SetRowOpts is enabled, and they have selected multiple rows. Each element of the array contains a
row number that the user selected when the list was displayed.

The array must be an long integer array, so be sure to use the ARRAY LONGINT command prior to
calling AL_GetSelect.

resultCode — This value is equal to one (1) if enough memory was available to resize array. If enough
memory was not available you should react accordingly.

AL_GetClickedRow - AL_GetSelect 211

User Action Commands

You can use AL SetSelect to highlight rows.

Example: multi-rows option is enabled, the list is displayed, and the user selects rows 2,4,5,6,10,11,15,
17,18,19,25.
“Area layout's form method
Case of
:(Form event= On load)
$result:=AL_SetArraysNam (elist;1;3;"alN";"aFN";"aCompany") “display the list
AL _SetRowOpts (elist;1;0,0;0;0) “turn on multi-rows option (2nd parameter)

$result:=AL_SetEventCallback (elist;"AL_EventCallback";0) “do not execute area object or form
method, update 4D variables

End case

"AL_EventCallback
“Event callback method
C_LONGINT ($0) “object method and form method will not be executed if O
C_LONGINT ($1) *Arealist Pro area
C_LONGINT ($2) *Arealist Pro event
C_LONGINT ($3) “event modifier
C_LONGINT ($4) “column — last clicked column
C_LONGINT ($5) ‘row — last clicked row
C_LONGINT ($6) ‘modifiers
C_STRING (255;$7) “tip string
C_STRING (255;$8) *area name
C_LONGINT ($result; $i)
Case of
:($2=1)"user singleclicked
ARRAY LONGINT (aRows;0) "MUST use a long integer array!
$result:=AL_GetSelect elist;aRows) "get the items selected by user
If ($result=1)
For ($i;1;Size of array (aRows)) "process each array item selected by user
SEARCH ([Company];[Company]Name=aCompany{aRows{$i}})
“do something here
End for
Else “insufficient RAM to get user selection array
ALERT ("Running low on memory, quit and restart!")
End if “$result=1
End case

AL_GetSelect 212

User Action Commands

AL GetCellSel

(areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X)
— resultCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ firstCellCol integer First cell column

+ firstCellRow longint First cell row

+ lastCellCol integer Last cell column

«— lastCellRow longint Last cell row

+ cellArray two-dimensional longint array ~ Discontiguous cells

+ resultCode longint Result code

AL_GetCellSel is used to get the cell selection. Use the cellSelection option of AL_SetCellOpts
to specify a cell selection mode prior to using this command. You can procedurally set the selected
cells using AL _SetCellSel.

If only one cell is selected, then [firstCellCol, firstCellRow] will contain this cell and
llastCellCol, lastCellRow] will both be 0.

If more than one cell is selected and all are contiguous, then [firstCellCol, firstCellRow]
and [lastCellCol, lastCellRow] will contain the starting and ending points of this range.

If more than one cell is selected but all are not contiguous, then [firstCellCol, firstCellRow]
and [lastCellCol, lastCellRow] will all be 0 and cellArray will contain the selected cells.

cellArray — Two-dimensional long integer array. The first dimension must be two. The first array is for
the column indices and the second array is for the row indices. The second dimension will be set by
Arealist Pro to be the same as the number of cells that are selected. See the following illustration.

cellArray
lo]1]2]
vy ¥

0 0

Cell 11 1
CeI||2 2 2

1
Celln|n n
Column Row

resultCode — This value is equal to one (1) if enough memory was available to resize cellArray.
If enough memory was not available you should react accordingly.

Example:

ARRAY LONGINT (aCellSelect;2;0)
AL _GetCellSel (elist;vFirstCol;vFirstRow;vLastCol;vLastRow;aCellSelect)

AL_GetCellSel 213

User Action Commands

AL GetScroll

(areaRef:L; verticalScroll:L; horizontalScroll:l)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout

+ verticalScroll longint Vertical position (element #) list is scrolled to
+ horizontalScroll integer Horizontal position (column #) list is scrolled to

AL_GetScroll returns the current position of the thumb in the vertical and horizontal scrollbars.

verticalScroll — This parameter represents the element number visible at the top of the Arealist Pro
display.

horizontalScroll — This parameter represents the column number visible at the left of the Arealist Pro
display

The value returned in horizontalScroll represents the actual column number, including any columns
which might be currently locked. For example, if the two left columns are locked, and the list is scrolled
one column to the left, so that the fourth column is adjacent to the 2" locked column, then the value
returned is four.

You can set the scroll position using AL SetScroll.
Example:

AL_GetScroll(elist;vVert;vHoriz)

AL GetColLock

(areaRef:L) = columns:|

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ columns integer Number of columns that are locked

AL_GetColLock returns the number of columns currently locked.

columns — This parameter returns the number of columns currently locked.

You can set the lock position using AL_SetColLock.

Example:

$lockcolumn:=AL_GetColLock (elist)

AL_GetCellScroll - AL_GetColLock 214

User Action Commands

AL GetLine

(areaRef:L) = selectedRow:L

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ selectedRow longint Number of currently selected row

AlL_GetLine returns the number of the currently selected row in the area specified by areaRef.
AL_GetLine should only be used with an Arealist Pro object in single-row mode. If the object is in mul-
ti-rows mode, you should use AL_GetSelect.

This command should not be confused with AL_GetClickedRow. AL_GetClickedRow returns the last
row that was clicked, while AL_GetLine returns the currently selected row, as a result of a click or any
other action.

selectedRow — This parameter returns the number of the currently selected row.
You can set the selected row using AL Setline.
Example:

‘Modify button object method

“does a MODIFY RECORD on the record corresponding to the currently selected row in the
Arealist Pro object elist

‘uses an ID array (previously loaded from an ID field) to load the correct record
$row:=AL_GetLine (elist)

SEARCH ([Company];[Company]ID=alD{$row})

MODIFY RECORD ([Company])

AL_SetCellText
(areaRef:L; text:T; flag:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
— text text Text you wish to set

— flag longint Flag

AL_SetCellText will set the currently highlighted cell text which can be obtained during Edit menu callback.

This routine will only work correctly during Edit menu callback.

AL_Getline - AL_SetCellText 215

User Action Commands

text — Sets the current cell text based on flags.

flags — Formatting flags:
0 — replace whole cell text
1 — replace selected text only

The following line is called in the On Load phase:
$result:=AL_SetEditMenuCallback (area;"EditCallback”)

The EditCallback project method is as follows:
C_LONGINT ($1) *area reference
C_LONGINT ($2) "event
C_TEXT ($3;$AL_Undo) “unused
$text:="456"
AL _SetCellText($1;$text; 1) *1 - replace selected text only

The user enters an editable cell:

123784

Then a group of three characters is selected (highlighted):
1235789

The callback method is called at this moment, and the selected text is replaced:

123456

AL_GetCellText
(areaRef:L; text:T; flag:L)

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
+ text text Returns current cell highlight text

— flag longint Flag

AL_GetCellText will return the currently highlighted cell text which can be obtained during Edit menu

callback.

This routine will only work correctly during Edit menu callback.

text — Returns current highlight text based on flags.

flags — Formatting flags:
0 — get whole cell text
1 — get selected text only

AL_SetCellText - AL_GetCellText

User Action Commands

The following line is called in the On Load phase:
$result:=AL_SetEditMenuCallback (area;"EditCallback”)

The EditCallback project method is as follows:
C_LONGINT ($1) *area reference
C_LONGINT ($2) "event
C_TEXT ($3;$AL_Undo) “unused
C_TEXT ($text)
AL_GetCellText($1;$text; 1) 1 - get selected text only

The user enters an editable cell:

[Example

Then a group of three characters is selected (highlighted):

Example

The callback method is called at this moment, with $text containing the selected substring:

Expression Value

=] Stext ‘amp”

AL GetLastEvent

(areaRef:L) = eventCode:L

Parameter Type Description

— areaRef longint Reference of Arealist Pro object on layout
(optional)

+— eventCode longint Event code

AL_GetLastEvent will return the last event that occurred in the specified AreaList Pro area.

If no parameter is used, this command will return the last event that occurred in the last AreaList Pro area
where an event occurred in the current process (it basically returns the old ALProEvt variable in this case).

Note that 18 (mouse moved) event is only available in the Event Callback Interface. It is NOT available
through AL_GetlLastEvent.

This command replaces the deprecated ALProEvt variable (existing projects using this variable will still
work, but AL_GetLastEvent should be used instead in new projects or in case of issues with ALProEvt).

In addition, AL_GetLastEvent offers a better control of event management compared to ALProEwt,
as it allows tracking of the last event in each ArealList Pro area. Please refer to Example 11.

AL_GetCellText - AL_GetlLastEvent 217

Utility Commands

Utility Commands

Arealist Pro includes several commands to assist in managing the operation of an ArealList Pro area.

Drop Area

ArealList Pro includes a simple plug-in area which functions as a “drop area” for rows, columns, or items
dragged from other objects. Please read the section Technical Details of the Dragging Implementation
for more information.

The Drop Area is essentially an invisible object which you will place on top of a graphic image
(such as a trash can icon). You can control what types of objects can be dragged to the Drop Area
using AL SetDropDst.

Drop Area Objects on a Multi-Page Layout

If you are using a Drop Area on a layout with multiple pages, you must disable a Drop Area which is not
on the active layout page. Use AL_SetDropDst with null strings for the destCode parameters.

Disabling Drop Areas

You may want to disable a Drop Area so that it does not receive update events from 4D or the System.
This involves the use of AL_SetScroll(area;0;0). See Scroll bars — Changing Displayed Form.

Sort Editor

Arealist Pro includes a Sort Editor dialog to allow the user to sort a list using more than one column as
the sort criteria.

The user can command/ctrl-click on the headers to display the dialog. You can use AL_ShowSortEd to
display this dialog procedurally.

Area Name

AL SetAreaName provides a more descriptive name for referencing AreaList Pro areas.

Pass a null string to clear the area name.

The name can also be obtained with AL_GetAreaName. This area name is also available in the event
callback method (parameter 8).

Plug-in information

AL GetVersion returns Arealist Pro’s version, while AL_GetPluginPath returns the active Arealist Pro
copy location.

Drop Area - Sort Editor - Area Name - Plug-in information 218

Utility Commands
Commands

%AL_DropArea

%AL_DropArea is the command used to identify the plug-in area to which an ArealList Pro row or
column can be dragged, but which does not display anything. When a row or column is dragged over
this area, the area will invert.

This command will appear in the 4D Object Types popup on a layout Property List. It is only used in
the object definition for an %AL_DropArea object, and should never be used as a command in a 4D
method.

AL_SetDropDst
(dropAreaRef:L; dstCodel:S; ...; dstCodeN:S)

Parameter Type Description
— dropAreaRef longint Reference of Drop Area object on layout
— dstCodel; ...; dstCodeN string String access code(s) to be received

AL_SetDropDst is used to set the access codes for the destination of a drag, and should be called before
a drag. Please read the section “What are access “codes”? for more information.

dstCodel; ...; dstCodeN — 15 characters. The dstCode can be any value (other than an empty

string), such as “RowDrag”, “ColDrag”, “ALPDrag”, “PartNum”, etc. Avoid using the strings “TEXT”
or “PICT".

The code should be the same as what is passed into a potential drag partner. The drag partner will be
the source/sender of the drag. The source area can be an Arealist Pro area or another object.

The Drop Area performs the following logic during the actual drag: when the drag takes place, the
destination codes that were given in dstCode1, dstCode2, etc. are compared to the source codes
communicated by the sender of the drag. If any of the codes match, the drag is enabled.

Please read the section Technical Details of the Dragging Implementation for more information.

When a Drop Area is placed on a page in a multi-page layout, be sure to disable dragging for
that area by calling this command with null string for the dstCode parameters. Please read the section
Drop Area Objects on a Multi-Page Layout for more information.

Example:

‘Enable dragging a row to this area
vStr:=String (eDrop) “creates a unique code that only allows dragging within this area
AL_SetDropDst (elist;vStr) “row type for destination

%AL_DropArea - AL_SetDropDst 219

Utility Commands

AL ShowSortEd

(areaRef:L) = sortDone:l

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ sortDone integer User clicked the Sort button

AL_ShowSortEd will display the Areal st Pro Sort Editor. The prompt may be set with the sortEditorPrompt
parameter of AL SetSortOpts. The Editor will display the header values currently specified for the ArealList
Pro object. The headers for picture columns will appear, but will be disabled.

Use AL_GetSort to determine what columns the user sorted on.

sortDone — This parameter returns what action the user made after the Sort Editor was displayed:

-1 — The Sort Editor is being displayed in another process in that copy of 4D on that computer.
In this case you can loop until a different value is returned or continue without sorting.

0 — The user clicked the Cancel button and the list was not sorted.
1 — The user clicked the Sort button and the list was sorted.
Example:

$sorted:=AL_ShowSortEd elist) “display Arealist Pro Sort Editor
If ($sorted = 1)

“do something here

End if

AL SetAreaName

(areaRef:L; areaName:S)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
— areaName string Arealist Pro area name

AL_SetAreaName provides an interface for defining a name to a given ArealList Pro area. This can be
helpful when using a generic event handler routine (see AL SetEventCallback), providing a method for
determining which area has passed along the desired event.

The following example will define the area name as “myArea” for the elist plug-in area:
AL_SetAreaName (elist;"myArea")

AL_ShowSortEd - AL_SetAreaName 220

Utility Commands

AL _GetAreaName

(areaRef:L; areaName:S)

Parameter Type Description
— areaRef longint Reference of Arealist Pro object on layout
+ areaName string Arealist Pro area name

AL_GetAreaName returns the name defined by AL SetAreaName. This value is also available in the
event callback method (parameter 8).

AL GetVersion - version:S

Parameter Type Description

— version string Arealist Pro version

AL_GetVersion returns the currrent Arealist Pro’s version.

Example:

$vers:=AL_GetVersion “returns the current plug-in version

AL_GetPluginPath — path:s

Parameter Type Description
— path string Full plug-in pathname.

AL_GetPluginPath returns the currently active Arealist Pro copy location on the hard drive, wherever it

is located (including nested in the project folder of .bundle in the Plugins folder).

Example:

$path:=AL_GetPluginPath “returns the active plug-in path

AL_GetAreaName - AL_GetVersion - AL_GetPluginPath

221

Obsolete Commands

Obsolete Commands

Several commands are obsolete in Arealist Pro’s current version, but are still supported for
compatibility. You should not use these commands for new projects.

This chapter provides a simple list for these commands and their syntax.

AL_SetArrays (areaRef:L; columnNumber:|; numArrays:|; array1:X; ...; arrayN:X) = resultCode:L
AL_InsertArrays (areaRef:L; columnNumber:l; numArrays:l; array1:X; ...; arrayN:X) = resultCode:L

AL_SetForeClr (areaRef:L; columnNumber:|; alpHdrForeColor:S; 4dHdrForeColor:I; alplListForeColor:S;
4dListForeColor:|; alpFtrForeColor:S; 4dFtrForeColor:I)

AL_SetBackClr (areaRef:L; columnNumber:l; alpHdrBackColor:S; 4dHdrBackColor:I; alpListBackColor:S;
4dListBackColor:I; alpFtrBackColor:S; 4dFtrBackColor:)

AL_DragMgrAvail (isDragMgrPresent:|)

AL_GetDragline (areaRef:L; oldRowNumber:L; newRowNumber:L; destAreaName:L)
AL_GetDragCol (areaRef:L; oldColumnNumber:l; newColumnNumber:l; destAreaName:L)
AL_SetDropOpts (dropAreaRef:L; acceptRowDrag:l; acceptColumnDrag:l)

AL_SetWinLimits (areaRef:L; enableResize:|; minWidth:I; minHeight:l; maxWidth:I; maxHeight:1)
AL DoWinResize (areaRef:L)

AL SaveData (areaRef:L; savePict:P) = resultCode:L

AL RestoreData (areaRef:L; restorePict:P) = resultCode:L

AL_SetSpellCheck (areaRef:L; columnNumber:I; mode:l)

Obsolete Commands 222

Examples

Examples

The examples in this section are designed to provide an overview of the use of ArealList Pro and the

basic commands.

You may also wish to examine the non-compiled version of the AreaList Pro demo, for more examples

on the various Arealist Pro capabilities.

Example 1 — A Simple One-Column List

Create a simple one-column list on a 4D layout, containing the elements of a 4D list. When the user
clicks on an element in the list, put the value of the selected element into a variable called vitem.

First we need to create the layout and draw the ArealList Pro plug-in object. We'll name the object elist.

8eee fZ] Form: [Layouts]Example 1

i = Example 1

- Wz 0L T R-D 5 G e

AL_SetArraysNam command.

This is Example L from the Reference Manual, loading an
array from a 4D List and displaying it using the

S50 100 150 200 250
elist w:Z0Z,h: 105
Arealist™ Pro v3.0
#©1990-2007 Beckware LLC. &ll Rights Reserved.
All Rights Feserved

&) Property List

4| eList (variablel) M =
glal2Infaf-|

¥ () Objects -

Type AreaListPro

Dbject Name Variablel

Wariable Name eList

v B Plug-in

Advanced Properties | Edit...

I "+ Coordinates & Sizing
L 4 ;_'" Resizing Options

Horizontal Sizing Crow

Vertical Sizing Grow

¥ 52 Display

Visible Always visible

Invisible by Default D
¥ 3 Appearance

Platform Inherited from Form[~ |

L Q Background and Border

Fill Color [|
Fill Pattern | 44
Border Line Style Transparent 11

Example 1 — A Simple One-Column List

223

Examples

We'll use the On Plug in Area/AL GetlLastEvent command (formerly ALProEvt variable) system to
configure our Arealist Pro area’s response to user events.

Here is the elist object method:

Case of
:(Form event=On Load) “initialize the Arealist Pro object
LIST TO ARRAY ("City, State";aCityState) “copy the list into an array

$errorcode:=AL_SetArraysNam (elist;1;1;"aCityState") “display array in Arealist Pro object
DEMO_Default(elist)

vltem:=aCityState{1}

: (Form event=On Plug in Areq) ‘respond to user action
If (AL_GetLastEvent (elist)=1) ‘did user single-click on a row?

$row:=AL_GetLine (elist) "get the row the user selected

vltem:=aCityState{$row} ‘get the value in that element of the array
End if "AL_GetlastEvent (elist)=1

End case

The DEMO_Default project method sets up the area’s appearance according to the current platform:

C_LONGINT ($1;$AL_Areq)

If Count parameters>=1)
$AL Area:=$1
AL_SetMiscOpts($AL_Area;0;3;"":0;1)

If (IsWindows =1) *“Windows
AL_SetHdrStyle ($AL_Areq;0;"Tahoma";11;0)
AL_SetStyle ($AL_Area;0;"Tahoma";11;0)
Else ‘MacOS
AL_SetStyle ($AL_Area;0;"Lucida Grande";11;0)
AL_SetHdrStyle ($AL_Areq;0;"Lucida Grande";11;0)
End if

AL_SetHeight($AL_Area;-1;-1;-1;3;-1;-1)
End if

Example 1 — A Simple One-Column List 224

Examples

The IsWindows project method merely returns True if the current platform is Windows:

C_LONGINT ($0;$platform; $system; $machine)
PLATFORM PROPERTIES ($platform; $system; $machine)
$0:=Num ($platform=Windows)

The layout will appear like this in the User or Runtime environment:

806 Example 1

Example 1

This is Example 1 from the Reference Manual, loading an array from a
4D List and displaying it using the AL_SetArraysMam command.

A

Ft. Lauderdale, FL
Ft. Worth, TX
Hartford, CT
Houston, TX
Little Rock, AR

Los Angeles, CA

Miami, FL

Mew York, NY
Orlando, FL
Phoenix, AZ
Pittsburgh, PA

Mew York, NY

Notice that the column header displays the default value of “A”. In the next example, we'll modify the
display to have a more meaningful header.

Example 1 — A Simple One-Column List 225

Examples

Example 2 — Displaying Headers on the List

Modify the previous example to display “City, State” as the header for the list column.
The modified object method for the AreaList Pro object is:
Case of
: (Form event=On load) ‘initialize the Arealist Pro object
LIST TO ARRAY ("City, State";aCityState) “copy the list into an array

$errorcode:=AL_SetArraysNam (elist;1;1;"aCityState") “display array in Arealist Pro object

AL_SetHeaders (elist; 1;1;"City, State") “specify the values for the column header
DEMO_Default(elist)

vltem:=aCityState{1}

: (Form event=On Plug in Area) ‘respond to user action
If (AL_GetLastEvent elist)=1) ‘did user single-click on a row?

$row:=AL_GetLine (elist) "get the row the user selected

vitem:=aCityState{$row} “get the value in that element of the array
End if "AL_GetlastEvent (elist)=1
End case

The ArealList Pro object now appears in the User or Runtime environment like this:

806 Example 2

Example 2

This is Example 2 from the Reference Manual, loading an array from
a 4D List and displaying it using the AL_SetArraysMam command.
The header has been set using the AL_SetHeaders command.

City, State |
Pittsburgh, PA -
Plano, TX
Portland, OR
Richardson, TX
San Diego, CA
San Francisco, CA
Santa Fe, NM

"I =

Sanm Francisco, CA

Example 2 — Displaying Headers on the List

226

Examples

Example 3 — Displaying Data from a Table

We'll change the previous example to load the array from a table in the database rather than a list.
Tables are commonly used to keep list items when the number of items is large or may change
frequently. Also, we'll display the City and State in separate columns.

This will require that our table structure keep the City and State values in two different fields. We can use
the same Arealist Pro object we created in the previous examples, and just modify the object method:
Case of
:(Form event=On Load) “initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]|City;aCity;[Cities] State;aState) “copy field values into arrays

$errorcode:=AL_SetArraysNam (elist;1;2;"aCity";"aState") “display arrays in Arealist Pro object

AL_SetHeaders (elist; 1;2;"City":"State") “specify the values for the column headers
DEMO_Default(elist)

vitem:=aCity{1}+", "+aState{1}

: (Form event=On Plug in Areq) ‘respond to user action
If (AL_GetLastEvent elist)=1) ‘did user single-click on a row?

$row:=AL_GetlLine (elist) "get the row the user selected

vitem:=aCity{$row}+" "+aState{$row} “get the value in that element of the arrays
End if "AlL_GetlastEvent (elist)=1

End case

Our layout now looks like this to the user:

806 Example 3

Example 3

This is Example 3 from the Reference Manual, loading an array
from a 4D datafile using SELECTION TO ARRAY and displaying it
using the AL_SetArraysiam command. The header has been set
using the AL_SetHeaders command.

City | state | |
Phoenix AL

Tuscan AZ m
Petaluma CA

Los Angeles CA
Palm Springs CA
S5an Diego CA

[«lni

Los Angeles CA

m—

A

Example 3 — Displaying Data from a Table 227

Examples

Example 4 — Selecting Multiple Rows

In the previous examples, we've used the default single-row selection mode, which allows only one row
to be selected, or highlighted, at any time. AreaList Pro can be configured to allow multiple rows to be
selected, and commands are available to highlight rows procedurally, as well as determine what rows
have been selected by the user.

Let’'s modify the previous example to work in multi-rows mode.

We'll add an additional line of code to the On load part of the object method to configure the ArealList
Pro object to be in multi-rows mode, using AL SetRowOpts. We'll initially display the list with no rows
selected. Since Arealist Pro defaults to no selected rows when in multi-rows mode, we don’t need to
use AL SetSelect in the On load phase.

When the user clicks on one or more items, we’'ll display the selected items in the vltem variable,
separated by a dash character. Finally, if the user double-clicks on a row, we want to close the layout
using the CANCEL command.

Here’s the modified object method:

Case of
: (Form event=On load) ‘initialize the Arealist Pro object

ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]|City;aCity;[Cities] State;aState) “copy field values into arrays
$errorcode:=AL_SetArraysNam (elist; 1;2;"aCity";"aState") “display arrays in Arealist Pro object
AL SetHeaders (elist; 1;2;"City";"State") “specify the values for the column headers
AL_SetRowOpts (elist;1;1,0;0) “set multi-rows mode and allow no selection parameters
DEMO_Default(elist)

vltem:=

: (Form event=On Plug in Area) ‘respond to user action

Case of
. (AL_GetLastEvent elist)=1) ‘did user singleclick on a row?
ARRAY LONGINT (aRows;0)
$OK:=AL_GetSelect (elist;aRows) "get the rows selected by user
vitem:=""
For($i;1;Size of array (aRows)) ‘look at each row selected by user

vitem:=vltem+aCity{aRows{$i}}+" "+aState{aRows{$i}}+" - " “plug values in vitem
End for

. (AL_GeftLastEvent (elist)=2) “double-click?
CANCEL ‘cancel the layout
End case ‘Al_GetlastEvent (elist)
End case

Example 4 — Selecting Multiple Rows 228

Examples

Now our layout looks like this:

s Na)a) Example 4

Example 4

This is Example 4 from the Reference Manual.
The Arealist Pro object has been set to allow multi-rows selections
using the AL_SetRowOpts command.

City | state | |
Mobile AL m
Fayetteville AR

Little Roclk AR
Phoenix AZ
Tuscon AZ
Petaluma CA

Los Angeles CA
Palm Springs CA

|1 i

Fayetteville AR - Phoenix AZ -

ey

i

Example 5 — Allowing Data Entry

Now that we have a basic Arealist Pro area displayed on our layout, we can implement data entry.

In AreaList Pro, all that needs to be done is to add a line of code to the On load part of the object
method. To initiate data entry with a double click, we use AL SetEntryOpts with the entryMode
parameter set to 3 (see Initiating Data Entry for more information about the different options available).

As a default, AreaList Pro allows all columns to be enterable once the method of initiating data entry
has been set.
Of course we must remove the double click CANCEL action. The code in the object method is now:
Case of
:(Form event=On Load) “initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) “copy field values into arrays
$errorcode:=AL_SetArraysNam (elist;1;2;"aCity";"aState") “display arrays in Arealist Pro object
AL_SetHeaders (elist; 1;2;"City";"State") “specify the values for the column headers
AL _SetRowOpts (elist;1;1,0;0) “set multi-rows mode and allow no selection parameters
AL_SetEntryOpts (elist;3;0;0) “set double click to enter data entry mode
DEMO_Default(elist)

vltem:=""

Example 4 — Selecting Multiple Rows - Example 5 — Allowing Data Entry 229

Examples

: (Form event=On Plug in Area) ‘respond to user action

Case of

:(AL_GetLastEvent (elist)=1) ‘did user single-click on a row?

ARRAY LONGINT (aRows;0)

$OK:=AL_GetSelect elist;aRows) "get the rows selected by user

vltem:=""

For ($i;1;Size of array (aRows)) ‘look at each row selected by user

vltem:=vltem+aCity{aRows{$i}}+" "+aState{aRows{$i}}+" - " “plug values in vitem

End for

End case 'AlL_GetlastEvent

End case

The layout now looks like this after double-clicking on the first cell with “AR” in it:

e o6

Example 5

Example 5

This is Example 5 from the Reference Manual, which was set up as
in Example 4. In addition, double click was selected to initiate data
entry using AL_SetEntryOpts.

City [state | |
Mobile AL m.
Fayetteville AR

Little Rock AR

Phoenix AZ

Tuscon A7 -
Petaluma CA |
Los Angeles CA bl

Example 5 — Allowing Data Entry

230

Examples

Example 6 — Restricting Data Entry to a Column

Now that data entry has been established in our example Arealist Pro area, let’s prohibit entry to one of
the columns. This requires executing AL_SetEnterable to override the default enterability for column 1.
In this command, which is also placed in the On load phase, we must specify the columnNumber,
which is 1, and the enterability, which we’ll set to 0 (not enterable.)

The modified object method is:
Case of
: (Form event=On load) ‘initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) “copy field values into arrays
$errorcode:=AL_SetArraysNam (elist;1;2;"aCity";"aState") “display arrays in Arealist Pro object
AL_SetHeaders (elist; 1;2;"City";"State") “specify the values for the column headers
AL_SetRowOpits (elist; 1;1,0;0) ‘set multi-rows mode and allow no selection parameters
AL_SetEntryOpts (elist;3;0;0) “set double click to enter data entry mode
AL SetEnterable (elist;1;0) ‘set column 1 to be non-enterable
DEMO_Default(elist)

vlitem:=""

: (Form event=On Plug in Area) ‘respond to user action

Case of
. (AL_GetLastEvent (elist)=1) *did user single<lick on a row?
ARRAY LONGINT (aRows;0)
$OK:=AL_GetSelect (elist;aRows) “get the rows selected by user
vlfem:=""
For($i;1;Size of array (aRows)) ‘look at each row selected by user

vitem:=vltem+aCity{aRows{$i}}+" "+aState{aRows{$i}}+" - " “plug values in vitem
End for

End case ‘Al_GetlastEvent (elist)
End case

This layout looks identical to that in Example 5, except that column 1 is no longer enterable. Test this by
double clicking on column 1: the row will be selected, but you won't begin data entry.

Double clicking on column 2 will initiate data entry as in Example 5.

Example 6 — Restricting Data Entry to a Column 231

Examples

Example 7 — Validating Data Entry

ArealList Pro has the capability to execute a 4™ Dimension project method when data entry ends on a
cell. This is known as a callback method, and can be specified using AL SetCallbacks.

In this example, we add a callback method which checks the value entered in a column 2 cell, and
warns the user if it is invalid. To implement this, AL_SetCallbacks is called from the On load phase, and
sets up the callback project method ExitCallback.

The new object method is:

Case of
:(Form event=On Load) “initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) “copy field values into arrays
$errorcode:=AL_SetArraysNam (elist;1;2;"aCity";"aState") “display arrays in Arealist Pro object
AL SetHeaders (elist; 1;2;"City";"State") “specify the values for the column headers
AL _SetRowOpts (elist;1;1;0;0) “set multi-rows mode and allow no selection parameters
AL _SetEntryOpts (elist;3;0;0) “set double click to enter data entry mode
AL _SetEnterable (elist;1;0) “set column 1 to be non-enterable
AL SetCallbacks (elist;"";"ExitCallback") “set exit callback to project method ExitCallback
DEMO_Default(elist)

vltem:=

: (Form event=On Plug in Area) ‘respond to user action

Case of
. (AL_GetLastEvent (elist)=1) “did user singlelick on a row?
ARRAY LONGINT (aRows;0)
$OK:=AL_GetSelect elist;aRows) "get the rows selected by user
vitem:=""
For ($i;1;Size of array (aRows)) ‘look at each row selected by user
vitem:=vltem+aCity{aRows{$i}}+" "+aState{aRows{$i}}+" - " “plug values in vitem
End for
End case "Al_GetlastEvent (elist)
End case
In the callback method, we must find out from Arealist Pro if the cell was actually modified, and if so,

which cell it was. AL_GetCellMod returns a boolean value indicating whether the cell was modified,
and AL_GetCurrCell returns its column and row position.

Note that the callback method is actually a function. Arealist Pro expects a return value which will
indicate whether or not the newly entered data is accepted.

Example 7 — Validating Data Entry 232

Examples

The code for the callback project method ExitCallback is:

*Project method: ExitCallback

C_BOOLEAN ($0) “"data valid" return value (True or False)
C_LONGINT ($1) “Arealist Pro object reference
C_LONGINT ($2) “action terminating data entry for this cell
C_LONGINT (vColumn;vRow)

If (AL_GetCellMod (elist)>0) ‘ask Arealist Pro if cell was modified
AL_GetCurrCell|(elist;vColumn;vRow) ‘find out which cell
“since we only have one enterable array, we don’t need to worry about the column
LIST TO ARRAY ("State Abbrev";aPossStates) “create a new array of all possible States
If Find in array (aPossStates;aState{vRow})=-1) “is modified element not valid?
$0:=False “tell Arealist Pro it is invalid — this forces the user to re-enter it
BEEP ‘provide user feedback
ALERT (aState{vRow}+" is not a valid state abbreviation. Please re-enter.")
Else

$0:=True “tell Arealist Pro entry is valid
End if

Else

$0:=True “tell Arealist Pro entry is valid
End if

Example 7 — Validating Data Entry 233

Examples

In this layout, if the user wants to double click into the “State” column second cell with “AR” in it, enter
“Z7Z", and exit the cell , this alert would be displayed:

OonOn Example 7

Example 7

This is Example 7 from the Reference Manual, which was built upon
Example 6. In addition, a exit cell callback was added to check the validity
of entered data using AL_SetCallbacks. AL_GetCellMod is used to detect if
the cell was modified, and AL_GetCurrCell is used to locate the cell.

City [state | |
Mobile AL O
Fayetteville AR
Little Rock Zz
Phoenix AZ
Tuscon AZ | -
Petaluma Alert
Los Angelg
| ZZ is not a valid state abbreviation. Please re-enter.

=l

Example 8 — Prohibiting Data Entry to a Specific Cell

This example takes advantage of another possible ArealList Pro callback, which is executed when a cell
is entered for data entry.

We’ll make column 1 data (City) enterable again (as in Example 5) but we will use this callback to
prohibit changes to for the state of California (abbreviation CA). The only other change necessary to
the ArealList Pro object method is to add the entry callback project method name, EntryCallback, to
the call to AL SetCallbacks.

The object method now is:
Case of
: (Form event=On load) ‘initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]|City;aCity;[Cities] State;aState) “copy field values into arrays

Example 7 — Validating Data Entry - Example 8 — Prohibiting Data Entry to a Specific Cell 234

Examples

$errorcode:=AL_SetArraysNam (elist; 1;2;"aCity";"aState") “display arrays in Arealist Pro object
AL_SetHeaders (elist;1;2;"City":"State") “specify the values for the column headers

AL _SetRowOpts (elist;1;1;0;0) “set multi-rows mode and allow no selection parameters

AL _SetEntryOpts (elist;3;0;0) “set double click to enter data entry mode

AL_SetCallbacks (elist;"EntryCallback";"ExitCallback") “set callback project methods
DEMO_Default(elist)

vltem:=

:(Form event=On Plug in Areq) ‘respond to user action

Case of
. (AL_GetLastEvent (elist)=1) “did user singlelick on a row?
ARRAY LONGINT (aRows;0)
$OK:=AL_GetSelect (elist;aRows) "get the rows selected by user
vlfem:=""
For ($i;1;Size of array (aRows)) ‘look at each row selected by user
vitem:=vltem+aCity{aRows{$i}}+" "+aState{aRows{$i}}+" - " “plug values in vitem

End for

End case "Al_GetlastEvent (elist)

End case
The entry callback method code checks the column number and row information by making use of

AL GetCurrCell. Note that this method now makes use of the two parameters that AreaList Pro passes to
it: the ArealList Pro area reference, and the method by which data entry was initiated.

*Project method: EntryCallback

C_LONGINT($1) *Arealist Pro object reference
C_LONGINT ($2) “entry cause - passed by Arealist Pro
C_LONGINT ($3) “only useful when fields are being displayed
C_LONGINT (vCurrCol;vCurrRow)
AL_GetCurrCell($1;vCurrCol;vCurrRow)

If (vCurrCol=1) “city
If (aState{vCurrRow}="CA")
AL_SkipCell($1)
End if
End if
When it is displayed in the Runtime environment, the layout in this example will look the same as the

layout in Example 7. However, the cities in the first column are now enterable, except for those which
are in California.

Example 8 — Prohibiting Data Entry to a Specific Cell 235

Examples

Example 9 — Using the Event Callback Interface

This example show how a more generic event callback project method can be installed to replace the
On Plug in Area/AL_GetlLastEvent command (formerly ALProEvt variable) system.

This is performed by a call to AL SetEventCallback, which instructs AreaList Pro to call the
EventCallBack project method instead of sending the On Plug in Area event to the object method and
form method.

The area’s object method is now only used for the On Load phase:

Case of
:(Form event=On Load) “initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) “copy field values into arrays
$errorcode:=AL_SetArraysNam (elist;1;2;"aCity";"aState") “display arrays in Arealist Pro object
AL SetHeaders clist; 1;2;"City";"State") “specify the values for the column headers
AL _SetRowOpts (elist;1;1;0;0) “set multi-rows mode and allow no selection parameters
AL _SetEntryOpts (elist;3;0;0) “set double click to enter data entry mode
AL _SetCallbacks (elist;"EntryCallback";"ExitCallback") “set callback project methods
$errorcode:=AL_SetEventCallback (elist;"EventCallBack";3) “set event callback
*(3 = do not execute object method and form method)
DEMO_Default(elist)

vlfem:=""
End case
The callback method code updates the vltem variable by making use of AL _GetSelect. Note that this
method makes use of the two first parameters that AreaList Pro passes to it: the AreaList Pro area
reference, and the event which triggered the callback method execution.

The method also uses Arealist Pro’s built-in constants:

*Project method: EventCallBack

C_LONGINT ($0) “object method and form method will not be executed if O
C_LONGINT ($1;$area) *Arealist Pro area

C_LONGINT ($2;$alpEvent) "Arealist Pro event

C_LONGINT ($3;%alpEventMod) “event modifier — unused now
C_LONGINT ($4;$col) “column — last clicked column

C_LONGINT ($5;$row) ‘row — last clicked row

C_LONGINT ($6;$modifiers) ‘modifiers

C_STRING (255;$7;$tip) “fip string

C_STRING (255;$8;$areaName) “plug-in area name (see AL_SetAreaName)

Example 9 — Using the Event Callback Interface 236

Examples

Case of

:(($2>=AL Single click event) & ($2<=AL Empty Area Control Click)) “all click types
ARRAY LONGINT (aRows;0)
$OK:=AL_GetSelect (elist;aRows) “get the rows selected by user

vitem:=
For($i;1;Size of array (aRows)) ‘look at each row selected by user
vltem:=vltem+aCity{aRows{$i}}+" "+aState{aRows{$i}}+" - " “plug values in vitem
End for
End case
$0:=0 “event handled

Example 10 — Drag and Drop Between Areas

This example will demonstrate how to implement drag and drop between two Arealist Pro areas.
Another area has been added to the right, with its corresponding variable to display selected row(s):

Example 10

This is Example 10 from the Reference Manual, which was
built upon Example 9. Option/alt-drag row(s) between areas.

e""l""l"'
S0 100

elist w: 195, h: 155
Arealist™ Pro v3.0

E1990-2007 Beckware LLC
41l Rights Reserwved

LI s s e

S0 100
eListDest w: 135, h: 153
Arealist™ Pro 3.0
E1990-2007 Beckwate LLC.
All Rights Reserved

Example 9 — Using the Event Callback Interface - Example 10 — Drag and Drop Between Areas 237

Examples

Enabling Drag and Drop

The left area’s object method allows multiple rows drag and drop to and from the area when the op-
tion/alt key is pressed. The “drag” access code is set for both areas.

Note that this code makes extensive use of Arealist Pro’s built-in constants:

Case of
: (Form event=On load) ‘initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]|City;aCity;[Cities] State;aState) “copy field values into arrays
$errorcode:=AL_SetArraysNam (elist;1;2;"aCity";"aState") “display arrays in Arealist Pro object
AL SetHeaders (elist;1;2;"City";"State") “specify the values for the column headers

AL_SetRowOpits (elist; AL Multiple row selection;AL Allow single or no row;2;1) “set multi-rows
mode, allow no selection, drag out, drag in

AL_SetDrgSrc (elist;AL Drag row data type;"drag") “set source access code

AL_SetDrgDst elist;AL Drag row data type;"drag") “set destination access code

AL_SetDrgOpts (elist; AL Drag row with option key;AL Scroll area size default;
AL Multiple row dragging;AL Drag between rows) “multiple rows dragging with option key

AL_SetEntryOpts (elist;AL Entry dbl select sgl;0;0) “set double click to enter data entry mode
AL SetCallbacks (elist;"EntryCallback";"ExitCallback") “set callback project methods
$errorcode:=AL_SetEventCallback (elist;"EventCallBack";2) “set event callback

*(2 = do not execute object method and form method)

DEMO_Default(elist)

vltem:=

End case

Example 10 — Drag and Drop Between Areas 238

Examples

Introducing Generic Programming

The destination area will behave the same way, except that it is empty until a drag occurs. This is where
we want to go generic. First, we will call a common dragAreaSetup project method, with the area
reference as $1 parameter:

‘dragAreaSetup

“called by both areas On Load phases

C_LONGINT ($1) *Arealist Pro area
AL_SetHeaders($1;1;2;"City";"State") “specify the values for the column headers

AL_SetRowOpts($1;AL Multiple row selection;AL Allow single or no row;2;1) “set multi-rows
mode, allow no selection, drag out, drag in

AL_SetDrgSrc($1;AL Drag row data type;"drag") “set source access code
AL_SetDrgDst($1;AL Drag row data type;"drag") “set destination access code

AL_SetDrgOpts($1;AL Drag row with option key;AL Scroll area size default;
AL Multiple row dragging;AL Drag between rows) “multiple rows dragging with option key

AL_SetEntryOpts($1;AL Entry dbl select sgl;0;0) “set double click to enter data entry mode
AL SetCallbacks ($1;"EntryCallback";"ExitCallback") “set callback project methods
$errorcode:=AL_SetEventCallback ($1;"EventCallBack";2) “set event callback

*(2 = do not execute object method and form method)

DEMO_Default($1)

Now our elist object method looks like this:
Case of
:(Form event=On Load) “initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) “copy field values into arrays
$errorcode:=AL_SetArraysNam (elist;1;2;"aCity";"aState") “display arrays in Arealist Pro object
dragAreaSetup (Self->)

vltem:=

End case

The right area’s object method does the same, but with empty arrays to begin with:
Case of
:(Form event=On Load) “initialize the Arealist Pro object
ARRAY TEXT (aCityDest;0)
ARRAY TEXT (aStateDest;0)
$errorcode:=AL_SetArraysNam (elist; 1;2;"aCityDest";"aStateDest") “empty arrays in this area

dragAreaSetup (Self->)
vltemDest:=""
End case

Example 10 — Drag and Drop Between Areas 239

Examples

Updating Area Entry and Exit Callback Methods

We need to update our area entry and exit callbacks to make them compatible with both areas, using
AL GetArrayNames:

*Project method: EntryCallback

C_LONGINT ($1) “Arealist Pro object reference
C_LONGINT ($2) “entry cause - passed by Arealist Pro
C_LONGINT ($3) “only useful when fields are being displayed
C_LONGINT (vCurrCol;vCurrRow)

AL _GetCurrCell($1;vCurrCol;vCurrRow)

ARRAY TEXT (aArrayNames;0)
$errorcode:=AL_GetArrayNames ($1;aArrayNames;0)

$ptrioStateArray:=Get pointer (aArrayNames{2}) “pointer to second col array (state)
If (vCurrCol=1) “city
If ($ptrToStateArray->{vCurrRow}="CA")
AL_SkipCell($1)
End if
End if

*Project method: ExitCallback
C_BOOLEAN ($0) “"data valid" return value (True or False)
C_LONGINT ($1) “Arealist Pro object reference
C_LONGINT ($2) “action terminating data entry for this cell
C_LONGINT (vColumn;vRow)
If (AL_GetCellMod (elist)>0) “ask Arealist Pro if cell was modified
AL_GetCurrCell(elist;vColumn;vRow) “find out which cell
“only the state array col 2 will be checked, we don't need to worry about the entered column
LIST TO ARRAY ("State Abbrev";aPossStates) “create a new array of all possible States
ARRAY TEXT (aArrayNames;0)
$errorcode:=AL_GetArrayNames ($1;aArrayNames;0)
$ptrToStateArray:=Get pointer (aArrayNames{2}) “pointer to second col array (state)
If (Find in array (aPossStates; $ptrToStateArray->{vRow})=-1) is modified element not valid?
$0:=False “tell Arealist Pro it is invalid — this forces the user to re-enfer it
BEEP ‘provide user feedback
ALERT (aState{vRow}+" is not a valid state abbreviation. Please re-enter.")
Else
$0:=True ‘tell Arealist Pro entry is valid
End if
Else

$0:=True “tell Arealist Pro entry is valid
End if

Example 10 — Drag and Drop Between Areas 240

Examples

Event Callback

First we create a common evtUpdateText project method to update either variable at the bottom of
the lists. It assumes that the aRows array containing the selected rows has been updated prior to the
method'’s call:

‘evtUpdateText

‘updates the variable at the bottom of the list

C_POINTER($1) *-> variable

C_POINTER ($2) "> city array

C_POINTER ($3) *-> state array

$1>:=""

For ($i;1;Size of array (aRows)) ‘look at each row selected by user (aRows populated by event callback)
$1->:=$1->+$2->{aRows{$i}}+" "+$3->{aRows{$i}}+" - " “plug values in vitem or vitemDest

End for

Here is how the layout will look with a few rows selected in both areas, once rows have been dragged
from the left area to the right one:

806 Example 10

Example 10

This is Example L0 from the Reference Manual, which was
built upon Example 9. Option falt-drag row(s) between areas.

City [state | | City [state | [
Mobile AL Petaluma CA
Fayetteville AR Wilmington DE

Little Rock AR Orlandao FL

Phoenix AL

Tuscon AL

Los Angeles CA

Palm Springs CA

San Diego CA

Hartford CcT

Washington DC

Ft. Lauderdale FL

Miami FL

Atlanta CA -

Chicago 1L .

Baton Rouge LA [l |
Tuscon AZ - Washington Petaluma CA - Orlando FL -

DC - Chicage IL -

Example 10 — Drag and Drop Between Areas 241

Examples

The event callback method is common to both areas. It now calls evtUpdateText when a click occurs (or
select all) and calls another project method named evtRowsDragged to handle a drag from the current
($1) area:

‘Project method: EventCallBack

C_LONGINT ($0) “object method and form method will not be executed if O

C_LONGINT ($1;$area) *Arealist Pro area

C_LONGINT ($2;$alpEvent) "Arealist Pro event

C_LONGINT ($3;$alpEventMod) “event modifier — unused now

C_LONGINT ($4;$col) “column — last clicked column

C_LONGINT ($5;$row) ‘row — last clicked row

C_LONGINT ($6;$modifiers) ‘modifiers

C_STRING (255;$7;$tip) “tip string

C_STRING (255;$8;$areaName) “plug-in area name (see AL_SetAreaName)

ARRAY LONGINT (aRows;0)

$OK:=AL_GetSelect elist;aRows) "get the rows selected by user

Case of
:((($2>=AL Single click event) & ($2<=AL Empty Area Control Click)) | ($2=AL Select all event))

“all click types or select all
If ($1=elist) “left area
eviUpdateText(->vitem;->aCity;->aState)

Else ‘right area
eviUpdateText(->vitemDest;->aCityDest;->aStateDest)
End if

:($2=AL Row drag event) ‘row(s) dragged from this area

If ($1=elist) “source is left area
eviRowsDragged ($1;->aCity;->aState;->aCityDest;->aStateDest)

"" “nothing selected on the left (rows have been removed)

vltem:=
eviUpdateText(->vitemDest;->aCityDest;->aStateDest) “update variable for right area with the new rows
AL _SetWidths (elistDest; 1;2:0;0) “resize columns in destination area

Else ‘source is right area
eviRowsDragged ($ 1;->aCityDest;->aStateDest;->aCity;->aState)
vltemDest:="" “nothing selected on the right (rows have been removed)
eviUpdateText(->vitem;->aCity;->aState) “update variable for left area with the new rows

End if

End case

$0:=0 “event handled

Example 10 — Drag and Drop Between Areas 242

Examples

Handling Drag Action
The evtRowsDragged project method is called by the event callback method. It performs the following
operations:

remove the selected rows from the source area (the aRows array has been populated by the
callback)

add them at the top of the destination area (same order)
redraw both areas

select the new rows in the destination area

“eviRowsDragged

‘updates both areas after a row(s) drag

C_LONGINT($1) “source Arealist Pro area

C_POINTER ($2;$3) *-> source city array ; -> source state array
C_POINTER ($4;$5) *-> destination city array ; -> source state array

INSERT ELEMENT ($4->;1,Size of array (aRows)) “insert rows at the beginning of destination arrays
INSERT ELEMENT ($5->;1;Size of array (aRows))

ARRAY LONGINT (aRowsToSelect;0) ‘deselect dragged rows in source area

AL SetSelect($1;aRowsToSelect) “deselect source rows

ARRAY LONGINT (aRowsToSelect;Size of array (aRows)) “select dragged rows in destination area

For ($i;Size of array (aRows);1;-1) ‘look backwards at each row selected by user
‘(aRows populated by event callback)

$4->{$i}:=$2->{aRows{$i}} “city
$5->{$i}:=$3->{aRows{$i}} “state
DELETE ELEMENT ($2->;aRows{$i}) “delete source city
DELETE ELEMENT ($3->;aRows{$i}) “delete source state
aRowsToSelect{$i}:=$i
End for
AL_UpdateArrays($1;AL Recalculate arrays) ‘update source area

AL_GetDrgArea($1;eDestination;0) “destination area
AL_UpdateArrays (eDestination;AL Recalculate arrays) ‘update destination area

AL_SetSelect(eDestination;aRowsToSelect) “select new rows
$OK:=AL_GetSelect (eDestination;aRows) “get the rows for eviUpdateText

evtUpdateText is then called by the callback method to update the variable.

Example 10 — Drag and Drop Between Areas 243

Examples

Example 11 — Getting the Last Event in each Area

This example will demonstrate the use of AL_GetLastEvent in two different AreaList Pro areas.

Each area’s last event is kept track of and displayed below the area. In addition, a text area on the
bottom of the layout displays the last detected event in any area (formerly ALProEwt):

Example 11

This is Example 11 from the Reference Manual, which was
built to illustrate the use of the AL_GetLastEvent command.

@""I""IIII
S0 10a

elist w: 155, h: 130
Arealist™ Pro «8.5
©1990-2011 Beckware LLC
All Rights Reserved

T T T T T T

50 100
elisthest w: 155, h: 190
Arealist™ Pro v8.5
©1990-2011 Beckware LLC.
All Rights Reserved

Last event (left): Last event (right):

Last event (global):

Our layout method takes care of the “Last event (global)” text (last event detected in any Arealist Pro
area):

Case of
:(Form event=On load)
vGlobalEventText:=""
: (Form event=On Plug in Area) “call from any of the two areas
AlpEventText (AL_GetLastEvent ;->vGlobalEventText)
End case

Example 11 — Getting the Last Event in each Area 244

Examples

The AlpEventText project method returns the text value, based upon our event case of example
(see Determining the User’s Action on an Arealist Pro Object):

C_LONGINT($1) “event code
C_POINTER($2) “to the event description (text)

Case of
($1=1)
$2->:="Single-click"

:($1=2)

$2->:="Double-click"
1 ($1=3)

$2->:="Single-click in an empty part of the area (without displayed data)"
H($1=4)

$2->:="Double-click in an empty part of the area (without displayed data)"
1 ($1=5)

$2->:="Control-lick (or right mouse click)"
:($1=6)

$2->:="Controlclick (or right mouse click) in an empty part of the area (without displayed data)"
:($1=7)

$2->:="Vertical scroll"
:($1=18)

$2->:="Mouse has been moved (callback method only)"
S ($1=-1)
$2->:="Sort button"

($1=2)

$2->:="Edit menu Select All"
:($1=-3)

$2->:="Column resized"
:($1=-4)

$2->:="Column lock changed"
L ($1=-5)

$2->:="Row has been dragged from this area"
2 ($1=-6)

$2->:="User has invoked Arealist Pro Sort Editor"
:($1=7)

$2->:="Column has been dragged from this area"

Example 11 — Getting the Last Event in each Area 245

Examples

:($1=-8)

$2->:="Cell has been dragged from this area"
($1=9)

$2->:="Object/window has been resized"
L ($1=-10)

$2->:="User clicked on column header, automatic sort won't be executed"
L ($1=11)

$2->:="Control-click on column header"
($1=12)

$2->:="Click on column footer"
: ($1=0) *No event, $2-> unchanged
Else

$2->:="Unknown event"

End case

If ($1#0) “Let's add the event code
$2->:=$2->+" ("+String($1)+")"
End if

Our elist object method On Plug in Area case updates the left area event text value:

Case of
: (Form event=On load) ‘initialize the Arealist Pro object
ALL RECORDS ([Cities]) ‘load all records in the Cities table
SELECTION TO ARRAY ([Cities]|City;aCity;[Cities] State;aState) “copy field values into arrays
$errorcode:=AL_SetArraysNam (Self>;1;2; "aCity";"aState") “display arrays in Arealist Pro object
AL _SetHeaders (Self->;1;2;"City";"State") “specify the values for the column headers

AL_SetRowOpts (Self->; AL Multiple row selection;AL Allow single or no row;2;1) “set multi-rows
mode, allow no selection, drag out, drag in

DEMO_Default(Self->)

vleftEventText:=""

: (Form event=On Plug in Areq) ‘call from any of the two areas
AlpEventText (AL_GetLastEvent (Self->);->vLeftEventTexi)
End case

The elistDest object method performs a similar update with vRightEventText.

Example 11 — Getting the Last Event in each Area 246

Examples

Here is how the layout will look after a couple of events:

Example 11

This is Example 11 from the Reference Manual, which was
built to illustrate the use of the AL_GetLastEvent command.

City |state | | (R < ate | | |

Fayetteville AR I Albuguergque MM &

Little Rock AR Annapolis []n]

Phoenix AZ Atlanta CA

Tuscon AZ Atlantic City M

Petaluma CA Auburn ME

Los Angeles CA Bangor ME

Palm Springs CA Baton Rouge LA

5an Diego CA Boston A

Hartford CcT Burlington T

Washington o Butte MT

Wilmington DE Canton OH

Ft. Lauderdale FL Chicago IL

Miami FL Cincinnatti OH

Orlando FL Columbia sC

Atlanta GA I Dallas T I
Last event {left): Last event (right):
Vertical scroll (7) Sort button (-1)

Last event (global):

Sort baion

Example 11 — Getting the Last Event in each Area 247

Arealist Pro Constant List

Arealist Pro Constant List

ALP Colors

Constant

AL White

AL Black

AL Magenta
AL Red

AL Cyan

AL Green

AL Blue

AL Yellow
AL Gray

AL Light gray
AL Use 4D palette color

ALP Patterns

Constant

AL White pattern

AL Black pattern

AL Gray pattern

AL Light gray pattern
AL Dark gray pattern

ALP Events

Constant

AL Null event

AL Single click event

AL Double click event

AL Empty Area Single click
AL Empty Area Double click

<
»v L LKL K i K KL B N N U -5
(¢”]

Type

wv »n »n n n

Type

- — — —

Value
white
black
magenta
red

cyan
green
blue
yellow
gray
light gray

Value
white
black

gray

light gray
dark gray

Value

AW N

Arealist Pro Constant List 248

Arealist Pro Constant List

AL Single Control Click

AL Empty Area Control Click
AL Vertical Scroll Event

AL Mouse moved event

AL Sort button event

AL Select all event

AL Column resize event

AL Column lock event

AL Row drag event

AL Sort editor event

AL Column drag event

AL Cell drag event

AL Object resize event

AL Column click event

AL Column control click event
AL Footer click event

ALP Entry callback actions

Constant

AL Click action

AL Tab key action

AL Shift_Tab key action

AL Return key action

AL Shift_Return key action
AL GotoCell action

AL ExitCell action

AL Cell validate action

AL SkipCell action

AL Other cell popup action
AL Active cell popup action

rr - rr - r -

Type

r-r

Arealist Pro Constant List

Value

- O O . N O Ul A W N —

—_

249

ALP Array commands

Constant

AL No error in arrays

AL Not an array error

AL Wrong type array error

AL Wrong number rows error
AL Max arrays exceeded error

AL Low memory array error

AL Recalculate arrays

AL Refresh and update arrays

ALP Sort commands

Constant

AL Sort in during off

AL Sort in during on

AL User sort off

AL User sort on

AL User sort bypass

AL User sort index only
AL Allow Sort editor off
AL Allow Sort editor on
AL Show Sort order off

AL Show Sort order on

AL Show Sort direction off
AL Show Sort direction on
AL Sort editor other process
AL Sort editor cancelled

AL Sort editor accepted

Type

r- —r — — — — —

Type

rr - —r - - - e

Value

- O = O = O W N = O = O

250

ALP Column commands

Constant Type Value
AL Apply to all columns L 0
AL Auto width L 0
AL Truncated upper left L 0
AL Truncated centered L 1
AL Scaled to fit L 2
AL Scaled proportional L 3
AL Just default L 0
AL Just left L 1
AL Just center L 2
AL Just right L 3
AL Use picture height off L 0
AL Use picture height on L 1
AL Allow column resize off L 0
AL Allow column resize on L 1
AL Resize in during off L 0
AL Resize in during on L 1
AL Allow column lock off L 0
AL Allow column lock on L 1
AL Display pixel width off L 0
AL Display pixel width on L 1
AL Use PICT Resource L 65536
AL Use PicRef L 131072
ALP Row commands

Constant Type Value
AL Apply to all rows L 0
AL Single row selection L 0
AL Multiple row selection L 1
AL Allow single row only L 0
AL Allow single or no row L 1
AL Move row info off L 0
AL Move row info on L 1
AL Enable row highlight L 0

251

AL Disable row highlight

AL Remove row style

AL Row style no change

AL Remove row font

AL Row font no change

AL Get row select low memory

AL Get row select succeeded

ALP Entry commands

Constant

AL Column entry off

AL Column entry typed only
AL Column entry popup only
AL Column entry both

AL Disable spell check

AL Enable spell check

AL Entry_none select_sgl|

AL Entry_none select_both
AL Entry_sgl select_none

AL Entry_dbl select_sgl

AL Entry_cmd_dbl select_both
AL Entry_shift_dbl select_both
AL Entry_opt_dbl select_both
AL Entry_ctrl_dbl select_both
AL Allow return off

AL Allow return on

AL Display seconds off

AL Display seconds on

AL Arrows move insertion

AL Arrows move cell

AL Enter key ignore

AL Enter key map to Tab

AL Enter key map to return
AL Use old popup icon

AL Use new popup icon

- un n rr

Type

rrr— - - - - - - - e

Value

- O N = O = O = O = O N O Ul b LW = O = O Wwhrh = O

252

Arealist Pro Constant List

AL Checkbox without title
AL Checkbox with title
AL Radio buttons

AL Cell not modified

AL Cell modified

ALP Misc commands

Constant

AL Registration failed

AL Registration passed

AL Show headers

AL Hide headers

AL No area selection

AL Wide border area selection
AL System 7 area selection
AL 3D frame area selection
AL Post key default

AL Hide footers

AL Show footers

AL Modern look off

AL Modern look on

AL Copy hidden columns off
AL Copy hidden columns on
AL Copy field delim default
AL Copy record delim default
AL Copy field wrap default
AL Toggle vert scroll bar

AL Show vert scroll bar

AL Hide vert scroll bar

AL Toggle horz scroll bar

AL Show horz scroll bar

AL Hide horz scroll bar

AL Area above vert scroll bar
AL Area below vert scroll bar
AL Area left horz scroll bar

. — — —

Type

rrmrr-rrrrrnrrru’;mtk ;s oi>orrrrkErekEres D ouneonrekre e - o

Arealist Pro Constant List

Value

- O =, O =) O - W N = O = 0O = 0

253

Arealist Pro Constant List

AL Area right horz scroll bar
AL No column dividers

AL No row dividers

AL Disable object resize

AL Enable object resize

ALP Cell commands

Constant

AL Row selection

AL Single cell selection

AL Multiple cell selection
AL Move cell info off

AL Move cell info on

AL Cell optimization default
AL Remove cell style

AL Cell style no change

AL Cell style not set

AL Remove cell font

AL Cell font no change

AL Cell font not set

AL Cell fore color not set
AL Cell back color not set
AL Remove cell entry

AL Cell entry off

AL Cell entry on

AL Cell entry not set

AL Get cell select low memory
AL Get cell select succeeded

- u»n n —

Type

rrrrrrrrrr n o onrerEes - e

Arealist Pro Constant List 254

Arealist Pro Constant List

ALP Drag commands

Constant

AL Drag row data type

AL Drag column data type
AL Drag cell data type

AL Drag row with no key

AL Drag row with option key
AL Scroll area size default
AL Single row dragging

AL Multiple row dragging
AL Drag between rows

AL Drag onto row

ALP Field commands

Constant

AL No error in fields

AL Not a file error

AL Not a field error

AL Wrong type field error
AL Max fields exceeded error
AL Wrong 4D vers for fields
AL Low memory field error
AL Refresh fields

AL Refresh and update fields
AL Recalculate fields

ALP Appearance Constants

Constant

AL Default Interface
AL Platinium Interface
AL Force OSX Interface
AL Force XP Interface
AL Force Vista Interface

Type

rr - — — — — —

Type

rr - — — — — - -

Type

- — — —

Arealist Pro Constant List

Value

Aow[\)._\

3

()

- o = O

Value

NN —m O O U1 A W N —= O

Value

AW N

255

Arealist Pro Constant List

ALP Edit Menu Constants

Constant Type Value

AL Edit Menu Undo Bit L 0
AL Edit Menu Redo Bit L 1
AL Edit Menu Cut Bit L 2
AL Edit Menu Copy Bit L 3
AL Edit Menu Paste Bit L 4
AL Edit Menu Clear Bit L 5
AL Edit Menu Select All Bit L 6
AL Edit Menu Entry Bit L 15
AL Edit Menu Setup Bit L 16
AL Edit Menu Handled Bit L 17
AL Edit Menu Undo Mask L 1
AL Edit Menu Redo Mask L 2
AL Edit Menu Cut Mask L 4
AL Edit Menu Copy Mask L 8
AL Edit Menu Paste Mask L 16
AL Edit Menu Clear Mask L 32
AL Edit Menu Select All Mask L 64
AL Edit Menu All Items Mask L 127
AL Edit Menu Entry Mask L 32768
AL Edit Menu Setup Mask L 65536
AL Edit Menu Handled Mask L 131072
ALP Format/Style Constants

Constant Type Value
AL Format Integer L

AL Format Longint L 2
AL Format Real L 3
AL Format Boolean L 4
AL Format Date L 5
AL Format Picture L 6
AL Style Header L 1
AL Style List L 2
AL Style Footer L 3

Arealist Pro Constant List 256

Arealist Pro Command Reference — Alphabetical

Arealist Pro Command Reference
Alphabetical

YOAL DITODATEA ...tttk bbbttt 221
YOATEALISIPTO ...ttt ettt 64
AL _EXITCEII (QrEARETL) ..ottt sttt bbbt 189
AL GetAreaName (areaRef:L; ar@aNaAME:S)cviiuiiiieeee oottt ettt ettt e et e ettt e et e et et e et e e e eee s 223
AL GetArrayNames (areaRef:L; resultArray:X; options:L) = reSultCOE:Lc.cuiuiiiiiriniiiicieieieieer et 67
AL GetCellColor (areaRef:L; cellColumn:l; cellRow:L; 4dForeColor:l; 4dBackCOolOr:1)c.oovoeeeeeeeeeeeeeeeeeeeeeeeee e 129
AL_GetCellEnter (areaRef:L; cellColumn:l; cellRow:L; enterability:])ccciieiriiiririiieiiee e 180
AL GetCellHigh (areaRef:L; startPosition:l; @ndPOSITION:I)cvuiuierriirieeiiieieiriie ettt 183
AL _GetCelIMOd (QreaRef:L) = FESUICOUE:L...... ... ettt ettt et ettt 181
AL GetCellOpts (areaRef:L; cellSelection:]; moveWithData:l; Optimization:1)c.creeueiriierierieieineinsieersee e seeeees 96
AL_GetCellRGBColor (areaRef:L; cellColumn:l; cellRow:L; cellForeRed:L; cellForeGreen:L; cellForeBlue:L; cellBackRed:L;
CelIBACKGIEEN:L; COIIBACKBIUE:IL)....ccuviiiieiie ettt ettt ettt e et e e et e e et e e et e e et e e e e eaaeeeateeeteeeeaaeeeenes 131
AL GetCellSel (areaRef:L; firstCellCol:I; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X) = resultCode:L.......ccovurveurireurennne. 215
AL GetCellStyle (areaRef:L; cellColumn:l; cellRow:L; styleNUm:l; fontNAME:S)cuvveiiuiieiiiriieirieieieee e 126
AL _GetCellText (areaRef:L; teXET; fIAZiL)ov.rvevirieriisiieieieiei ettt ettt ss bbbt 218
AL GetCellValue (areaRef:L; cellRow:L; cellColumn:l; alphanumericData:T; pictData:P)..........ccevivrvriimeieiierieiieieeeeieeee e 181
AL_GetClickedROW (areaRef:L) = CHCKEAROW:Lv.iviiiiiieiiieieiiieie ettt 212
AL_GetColLOCk (areaRef:L) = COIUMNS:L........c.cueiiiriieiieieiiiieie ettt sttt 216
AL GetColOpts (areaRef:L; allowColumnResize:l; automaticResize:l; allowColumnLock:l; hideLastColumns:|; displayPixelWidth:l;
dragColumn:l; ACCEPIDIAZID) ...euviiiiieiiiete etttk bbb bttt ettt ettt ekttt et n et 94
AL _GetColumn (areaRef:L) = ClICKEACOIUMN:L......c.iuiiiiiiiieiieieie ettt 211
AL _GetCopyOpts (areaRef:L; includeHiddenCols:I; fieldDelimiter:S; recordDelimiter:S; fieldWrapper:S)cocoevvriicceeennnnenes 104
AL GetCurrCell (areaRef:L; cellCOIUMN:E; CERIROWEL) ... ettt es 187
AL GetDrgArea (areaRef:L; destArea:L; destProcessID:I)c.c.ciiiiiiiiiiiiiiiiieee et 199
AL _GetDrgDstCOol (areaRef:L; deStCOLI)cvuiuuiiriirciriieici ittt 202
AL GetDrgDstROW (AareaRef:L; dESTROW:L)c.viiuiiieieeeieceee ettt ettt et ettt et e et e et e et e e eaeeeneeeaaeeeaeeaeeeneas 202
AL _GetDrgDstTyp (areaRef:L; destDataTYPE:)c.cueuiuiiiriiieieiiieiiiset ettt ettt ettt ettt beneaes 200
AL _GetDrgSrCCol (AareaRef:L; SOUICETOI) ...ttt ettt ettt ettt ettt et et 198
AL _GetDrgSrcROW (AreaRef:L; SOUICEROW Looueiiie ettt et ettt et e et ee et e e et e et e eaeeeaeeeaeas 197
AL _GetFields (areaRef:L; tableArray:X; fieldArray:X) = reSUCOUE:Lourviuiviiiicieicieiee e 165
AL_GetFooters (areaRef:L; footerList:X; options:L) = reSUCOE:L..........cuiueuiuiiiiiieieieieice ettt 76
AL GetFormat (areaRef:L; columnNumber:l; format:S; columnjust:l; headerjust:l; footerJust:l; usePictHeight:])coooveveieicivnnnniines 82
AL_GetFtrStyle (areaRef:L; columnNumber:l; fontName:S; size:l; styleNUM:I)c.vuiiiirieriirices e 85

Arealist Pro Command Reference — Alphabetical 257

Arealist Pro Command Reference — Alphabetical

AL _GetHdrStyle (areaRef:L; columnNumber:L; fontName:S; size:l; styleNum:l)

AL _GetHeaderOptions (areaRef:L; options:L; iconRef:L; callbackMethod:S)

AL_GetHeaders (areaRef:L; headerList:X; options:L) = resultCode:L

AL_Getl astEvent (areaRef:L) = eventCode:L

AL Getline (areaRef:L) = selectedRow:L

AL _GetMiscOpts (areaRef:L; hideHeaders:|; areaSelected:l; postKey:S; showFooters:|; useModernLook:1)
AL _GetMode (areaRef:L) = resultCode:L

AL_GetPictureEscape (areaRef:L) = escapeChar:S

AL GetPluginPath — path:S

AL GetPrevCell (areaRef:L; cellColumn:l; cellRow:L)

AL _GetRowOpts (areaRef:L; multiRows:I; allowNoSelection:I; dragRow:l; acceptDrag:I; moveWithData:l; disableRowHighlight:])

AL GetScroll (areaRef:L; verticalScroll:L; horizontalScroll:1)
AL _GetSelect (areaRef:L; array:X) = resultCode:L

AL GetSort (areaRef:L; columnT:l; ...; columnN:l)

AL GetSortedCols (areaRef:L; sortList:X)) = resultCode:L

AL GetSortEditorParams (areaRef:L; windowTitle:S; prompt:S; headerList:X; sortList:X) = resultCode:L

AL GetStyle (areaRef:L; columnNumber:|; fontName:S; size:l; styleNum:l)

AL GetTable (areaRef:L) = tableNumber:L

AL_GetVersion = version:S

AL GetWidths (areaRef:L; columnNumber:l; numWidths:I; width1:l; ...; widthN:l)

AL_GotoCell (areaRef:L; cellColumn:l; cellRow:L)

AL InsArrayNam (areaRef:L; columnNumber:l; numArrays:l; array1:S; ...; arrayN:S) = resultCode:L

AL InsertFields (areaRef:L; tableNum:l; columnNumber:l; numFields:I; fieldNum1:I ... fieldNumN:I) = resultCode:L
AL Register (registrationKey:S) = resultCode:L

AL _RemoveArrays (areaRef:L; columnNumber:l; numArrays:|)

AL RemoveFields (areaRef:L; columnNumber:l; numFields:I)

AL SetAltRowClr (areaRef:L; alpRowBackColor:S; 4dRowBackColor:I; options:L)

AL SetAltRowColor (areaRef:L; red:L; green:L; blue:L; options:L)

AL SetAreaName (areaRef:L; areaName:S)

AL_SetArraysNam (areaRef:L; columnNumber:l; numArrays:l; array1:S; ...; arrayN:S) = resultCode:L

AL SetBackColor (areaRef:L; columnNumber:l; alpHdrBackColor:S; 4dHdrBackColor:l;
alpListBackColor:S; 4dListBackColor:l; alpFtrBackColor:S; 4dFtrBackColor:I)

AL SetBackRGBColor (areaRef:L; columnNumber:L; hdrBackRed:L; hdrBackGreen:L; hdrBackBlue:L;
listBackRed:L; listBackGreen:L; listBackBlue:L; ftrBackRed:L; ftrBackGreen:L; ftrBackBlue:L)

AL SetCalcCall (areaRef:L; columnNumber:l; calcCallback:S)

AL SetCallbacks (areaRef:L; entryStartedMethod:S; entryFinishedMethod:S)

Arealist Pro Command Reference — Alphabetical

258

Arealist Pro Command Reference — Alphabetical

AL SetCellBorder (areaRef:L; cellColumn:l; cellRow:L; borderLeft:I; borderTop:l; borderRight:I; borderBottom:l; offset:l; width:F;
redColor:l; greenColor:l; blueColor:1)

AL SetCellColor (areaRef:L; firstCellCol:I; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X; alpForeColor:S; 4dForeColor:l;
alpBackColor:S; 4dBackColor:I)

AL SetCellEnter (areaRef:L; firstCellCol:I; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X; enterability:])

AL SetCellFrame (areaRef:L; firstCellCol:I; firstCellRow:L; lastCellCol:l; lastCellRow:L; offset:I; width:F; redLightColor:l;
greenLightColor:l; blueLightColor:l; redDarkColor:l; greenDarkColor:1; blueDarkColor:1; clearAllBorders:I)

AL SetCellHigh (areaRef:L; startPosition:|; endPosition:I)
AL SetCelllcon (areaRef:L; cellColumn:l; cellRow:L; pictRef:P; iconAlignment:|; horPosition:l; vertPosition:I; offset:]; scaling:l)
AL SetCellOpts (areaRef:L; cellSelection:l; moveWithData:l; optimization:I)

AL SetCellRGBColor (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X;
cellForeRed:L; cellForeGreen:L; cellForeBlue:L; cellBackRed:L; cellBackGreen:L; cellBackBlue:L)

AL SetCellSel (areaRef:L; firstCellCol:[; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X)

AL SetCellStyle (areaRef:L; firstCellCol:l; firstCellRow:L; lastCellCol:l; lastCellRow:L; cellArray:X; styleNum:l; fontName:S)
AL SetCellText (areaRef:L; text:T; flag:L)

AL SetCellValue (areaRef:L; row:L; column:l; alphaNumericData:S; pictData:P)

AL SetColLock (areaRef:L; columns:l)

AL SetColOpts (areaRef:L; allowColumnResize:l; automaticResize:l; allowColumnLock:l; hideLastColumns:|; displayPixelWidth:l;
dragColumn:l; acceptDrag:l)

AL SetCopyOpts (areaRef:L; includeHiddenCols:I; fieldDelimiter:S; recordDelimiter:S; fieldWrapper:S)

AL SetDefaultFormat (selector:L; format:S)

AL SetDefaultStyle (selector:L; fontName:S; size:L; styleNum:L)

AL SetDividers (areaRef:L; colDividerPattern:S; alpColDividerColor:S; 4dColDividerColor:l; rowDividerPattern:S;
alpRowDividerColor:S; 4dRowDividerColor:l)

AL SetDrgDst (areaRef:L; destDataType:l; dstCode1:S; ...; dstCode10:S)

AL SetDrgOpts (areaRef:L; dragRowWithOptKey:l; scrollAreaSize:l; multiRowDrag:I; dragOntoRow:l)
AL_SetDrgSrc (areaRef:L; sourceDataType:l; srcCodel:S; ...; srcCode10:S)

AL SetDropDst (dropAreaRef:L; dstCodel:S; ...; dstCodeN:S)

AL SetEditMenuCallback (areaRef:L; callbackMethod:S) = resultCode:L

AL _SetEnterable (areaRef:L; columNumber:|; enterability:l; popupArray:X; menuPackRef:L)

AL SetEntryCtls (areaRef:L; columnNumber:l; controlType:l)

AL SetEntryOpts (areaRef:L; entryMode:l; allowReturn:1; displaySeconds:l; moveWithArrows:l; mapEnterKey:|;
decimalCharForWin:S; useNewPopuplcon:l)

AL_SetEventCallback (areaRef:L; callbackMethod:S; flag:L) = resultCode:L

AL SetFields (areaRef:L; tableNum:l; columnNumber:l; numFields:I; fieldNumT; ...; fieldNumN:I) = resultCode:L

AL SetFile (areaRef:L; tableNum:l) = resultCode:L

AL SetFilter (areaRef:L; columNumber:l; entryFilter:S)

AL_SetFooters (areaRef:L; columnNumber:l; numFooters:|; footer1:S; ...; footerN:S)

AL SetForeColor (areaRef:L; columnNumber:l; alpHdrForeColor:S; 4dHdrForeColor:1; alpListForeColor:S; 4dListForeColor:l;
alpFtrForeColor:S; 4dFtrForeColor:l)

Arealist Pro Command Reference — Alphabetical

259

Arealist Pro Command Reference — Alphabetical

AL SetForeRGBColor (areaRef:L; columnNumber:L; hdrForeRed:L; hdrForeGreen:L; hdrForeBlue:L; listForeRed:L; listForeGreen:L;
listForeBlue:L; ftrForeRed:L; ftrForeGreen:L; ftrForeBlue:L)

AL_SetFormat (areaRef:L; columnNumber:l; format:S; column]ust:l; headerjust:l; footerjust:l; usePictHeight:1)
AL _SetFtrStyle (areaRef:L; columnNumber:|; fontName:S; size:l; styleNum:I)
AL SetHdrStyle (areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)

AL SetHeaderlcon (areaRef:L; columnNumber:l; iconAlignment: picture:P; horPosition:|; vertPosition:l; offset:]; scaling:1)

AL SetHeaderOptions (areaRef:L; options:L; iconRef:L; callbackMethod:S)
AL SetHeaders (areaRef:L; columnNumber:l; numHeaders:I; header1:S; ...; headerN:S)

AL SetHeight (areaRef:L; numHeaderLines:; headerHeightPad:I; numRowLines:I; rowHeightPad:I; numFooterLines:l;
footerHeightPad:1)

AL Setlnterface (areaRef:L; appearance:L; sortindicator:L; useEllipsis:L; ignoreMenuMeta:L; clickDelay:L; allowPartialRow:L;
useOldPopup:L; entryControls: L)

AL SetLine (areaRef:L; rowNumber:L)
AL SetMainCalls (areaRef:L; areaEnteredMethod:S; areaExitedMethod:S)

AL SetMinRowHeight (areaRef:L; minRowHeight:L)

AL SetMiscColor (areaRef:L; selector:l; alpColor:S; 4dColor:I)
AL SetMiscOpts (areaRef:L; hideHeaders:I; areaSelected:|; postKey:S; showFooters:|; useModernLook:I)
AL_SetMiscRGBColor (areaRef:L; selector:L; red:L; green:L; blue:L)

AL SetPictureEscape (areaRef:L; escapeChar:S)

AL SetRGBDividers (areaRef:L; colDividerPattern:S; colDividerRed:L; colDividerGreen:L;

colDividerBlue:L; rowDividerPattern:S; rowDividerRed:L; rowDividerGreen:L; rowDividerBlue:L)
AL SetRowColor (areaRef:L; rowNumber:L; alpRowForeColor:S; 4dRowForeColor:L; alpRowBackColor:S; 4dRowBackColor:L)
AL SetRowOpts (areaRef:L; multiRows:I; allowNoSelection:l; dragRow:l; acceptDrag:I; moveWithData:l; disableRowHighlight:1)

AL SetRowRGBColor (areaRef:L; rowNumber:L; rowForeRed:L; rowForeGreen:L; rowForeBlue:L; rowBackRed:L; rowBackGreen:L;
rowBackBlue:L)

AL SetRowsStyle (areaRef:L; rowNumber:L; styleNum:l; fontName:S)

AL SetScroll (areaRef:L; verticalScroll:L; horizontalScroll:l)

AL _SetSelect (areaRef:L; rowsToSelect:X)

AL SetSort (areaRef:L; column1:l; ...; columnN:l)

AL SetSortedCols (areaRef:L; sortList:X) = resultCode:L

AL_SetSortEditorParams (areaRef:L; windowTitle:S; prompt:S; labelList:X; columnNumberList:X) = resultCode:L
AL SetSortOpts (areaRef:L; automaticSort:l; userSort:|; allowSortEditor:l; sortEditorPrompt:S; showSortOrder:l; showSortDirlndicator:)
AL SetStyle (areaRef:L; columnNumber:l; fontName:S; size:l; styleNum:l)

AL SetSubSelect (areaRef:L; firstRecord:L; numRecords:L)

AL SetWidths (areaRef:L; columnNumber:l; numWidths:I; width1:l; ...; widthN:I)

AL _ShowsSortEd (areaRef:L) = sortDone:l

AL SkipCell (areaRef:L)

AL _UpdateArrays (areaRef:L; updateMethod:1)

AL _UpdateFields (areaRef:L; updateMethod:I)
Arealist Pro Command Reference — Alphabetical 260

	Copyright and Trademarks
	About AreaList Pro
	Compatibility Information
	Technical Support
	Registration
	Using the AreaList Pro Manual
	Cross-Referencing Format
	Command List
	Command Descriptions and Syntax

	Installing AreaList Pro
	Installation: Plug-In 2004 (MacOS and Windows)
	Backwards Compatibility

	Configuring AreaList Pro
	The AreaList Pro User Interface
	Headers
	Footers
	Column Widths
	Column Locking
	Calculated Columns when Displaying Fields
	Sorting
	Enterability

	Rows with Multiple Lines of Text
	Color
	Styles
	Sorting
	Scrolling
	Selection
	Copy to Clipboard and Edit Menu
	Drag and Drop
	To Drag a Row
	Dragging to a Row
	Dragging to a Column
	To Drag a Cell
	Dragging to a Cell

	Enterability
	Initiating Data Entry
	Click and Hold
	Data Selection and Edit Menu Commands
	Entering Data
	Data Entry Using Popups
	Moving the Current Entry Cell
	Exiting Data Entry
	Enterability for Fields

	Resizable Windows with AreaList Pro

	Creating an AreaList Pro object on a form
	To configure a variable object as an AreaList Pro object
	AreaList Pro Object Dimensions
	Creating an Drop Area on a Form
	Using the AreaList Pro Commands
	Command Descriptions and Syntax
	Causing an AreaList Pro Callback Method to Execute
	Developer Alert

	Configuring AreaList Pro Using the Advanced Properties Dialog
	To Display the Advanced Properties Dialog
	Setting the Data to Display
	Displaying Arrays
	Displaying Records
	Column Enterability
	Default Column
	General Options
	Enterability
	Advanced Options
	Dragging
	Preview

	Configuring AreaList Pro Using Commands
	Using Defined Constants with AreaList Pro
	Specifying the Arrays to Display
	Inserting and Deleting Arrays
	Modifying Array Elements Procedurally
	Specifying the Fields to Display
	Headers
	Footers
	Column Widths
	AreaList Pro Height
	Complete Rows Display
	Partial Rows Display

	Column Locking
	Row Height
	Color
	Column, Header, and Footer Colors
	Row-Specific Colors
	Cell-Specific Colors

	Styles
	Column, Header, and Footer Styles
	Row-Specific Styles
	Cell-Specific Styles

	Dividing Lines
	Sorting
	Sort Buttons
	Sort Direction Indicator
	Sort Editor
	Procedural Sorting
	Sorting When Displaying Fields

	Scrolling
	Selection
	Clipboard
	Picture Columns
	Scroll bars — Changing Displayed Form
	Drag and Drop — Changing Form Pages
	Using AreaList Pro on a Resizable Window
	Performance Issues with Formatting Commands
	Borders and Frames
	Header / Cell Icon Support
	The Escape Sentence System
	Using Icons with Escape Sentences
	Using Picture Library Items with Escape Sentences
	Longint Reference System
	Picture Objects in Headers

	Commands
	AL_Register
	%AreaListPro
	AL_SetArraysNam
	AL_InsArrayNam
	AL_GetArrayNames
	AL_RemoveArrays
	AL_UpdateArrays
	AL_SetHeaders
	AL_GetHeaders
	AL_SetHeaderIcon
	AL_SetHeaderOptions
	AL_GetHeaderOptions
	AL_SetFooters
	AL_GetFooters
	AL_SetWidths
	AL_SetFormat
	AL_GetFormat
	AL_SetHdrStyle
	AL_GetHdrStyle
	AL_SetFtrStyle
	AL_GetFtrStyle
	AL_SetStyle
	AL_GetStyle
	AL_SetRowOpts
	AL_GetRowOpts
	AL_SetColOpts
	AL_GetColOpts
	AL_SetCellOpts
	AL_GetCellOpts
	AL_SetInterface
	AL_SetMiscOpts
	AL_GetMiscOpts
	AL_SetMiscColor
	AL_SetMiscRGBColor
	AL_SetCopyOpts
	AL_GetCopyOpts
	AL_SetSortOpts
	AL_SetSortEditorParams
	AL_GetSortEditorParams
	AL_SetSortedCols
	AL_SetForeColor
	AL_SetForeRGBColor
	AL_SetBackColor
	AL_SetBackRGBColor
	AL_SetDividers
	AL_SetCellBorder
	AL_SetCellFrame
	AL_SetRGBDivider
	AL_SetRowStyle
	AL_SetRowColor
	AL_SetRowRGBColor
	AL_SetAltRowColor
	AL_SetAltRowClr
	AL_SetCellStyle
	AL_GetCellStyle
	AL_SetCellColor
	AL_GetCellColor
	AL_SetCellRGBColor
	AL_GetCellRGBColor
	AL_SetCellSel
	AL_SetSort
	AL_SetCellValue
	AL_SetLine
	AL_SetSelect
	AL_SetScroll
	AL_SetColLock
	AL_SetHeight
	AL_SetMinRowHeight
	AL_SetPictureEscape
	AL_GetPictureEscape

	Using the Callback Methods
	Summary
	Warnings
	Executing a Callback Upon Entering an Area
	Executing a Callback Upon Exiting an Area
	Using Callback Methods During Data Entry
	Executing a Callback Upon Entering a Cell
	Executing a Callback Upon Leaving a Cell
	Compatibility Note — New Menu Architecture
	Compatibility Note — AL ExitCell and AL Cell deselect action become AL ExitCell and AL Cell Validate

	Event Callback Interface
	Edit Menu Callback
	Calculated Column Callback
	Commands
	AL_SetMainCalls
	AL_SetCallbacks
	AL_SetEventCallback
	AL_SetEditMenuCallback
	AL_SetCalcCall

	Field and Record Commands
	Using the Field Display Capability
	Temporary Arrays
	Arrays and Fields

	Compatibility Note — Field Display and Callbacks
	Setting a Calculated Column
	Setting the Callback Method
	Sorting
	Enterability
	Time Data

	Displaying 4D Fields
	Fields from Related One Tables
	Redraw and Scrolling
	Type-ahead
	Copy Rows to the Clipboard
	Enterability
	Dragging
	Sorting
	Maximum Number of Records Displayed
	Performance Issues When Displaying Fields

	Commands
	AL_SetFile
	AL_SetFields
	AL_GetMode
	AL_GetTable
	AL_GetFields
	AL_InsertFields
	AL_RemoveFields
	AL_UpdateFields
	AL_SetSubSelect

	Enterability
	Initiating Data Entry
	Entering Data
	Filters
	Click and Hold Data Entry Initiation
	Entry Cell Border
	Popups
	Moving the Current Entry Cell
	Compatibility NoteAdding or Deleting Rows from a Form Button
	Redrawing the Display from the Callback Method
	Exiting Data Entry
	Commands
	AL_SetEnterable
	AL_SetFilter
	AL_SetEntryOpts
	AL_SetEntryCtls
	AL_SetCellEnter
	AL_GetCellEnter
	AL_GetCellMod
	AL_GetCellValue
	AL_SetCellHigh
	AL_GetCellHigh
	AL_SetCellIcon
	AL_GotoCell
	AL_GetCurrCell
	AL_GetPrevCell
	AL_SkipCell
	AL_ExitCell

	Dragging Commands
	Background
	Technical Details of the Dragging Implementation
	What are access “codes”?
	After a drag
	AreaList Pro on Multi-Page Layouts
	Multiple Rows Dragging
	Drag DataType
	Drop Area

	Commands
	AL_SetDrgSrc
	AL_SetDrgDst
	AL_SetDrgOpts
	AL_GetDrgSrcRow
	AL_GetDrgSrcCol
	AL_GetDrgArea
	AL_GetDrgDstTyp
	AL_GetDrgDstRow
	AL_GetDrgDstCol

	User Action Commands
	AreaList Pro’s PostKey
	Determining the User’s Action on an AreaList Pro Object
	Commands
	AL_GetWidths
	AL_GetSort
	AL_GetSortedCols
	AL_GetColumn
	AL_GetClickedRow
	AL_GetSelect
	AL_GetCellSel
	AL_GetScroll
	AL_GetColLock
	AL_GetLine
	AL_SetCellText
	AL_GetCellText
	AL_GetLastEvent

	Utility Commands
	Drop Area
	Drop Area Objects on a Multi-Page Layout

	Sort Editor
	Area Name
	Current version
	Commands
	%AL_DropArea
	AL_SetDropDst
	AL_ShowSortEd
	AL_GetAreaName
	AL_GetVersion ➞ version:S

	Obsolete Commands
	Examples
	Example 1 — A Simple One-Column List
	Example 2 — Displaying Headers on the List
	Example 3 — Displaying Data from a Table
	Example 4 — Selecting Multiple Rows
	Example 5 — Allowing Data Entry
	Example 6 — Restricting Data Entry to a Column
	Example 7 — Validating Data Entry
	Example 8 — Prohibiting Data Entry to a Specific Cell
	Example 9 — Using the Event Callback Interface
	Example 10 — Drag and Drop Between Areas
	Enabling Drag and Drop
	Introducing Generic Programming
	Updating Area Entry and Exit Callback Methods
	Event Callback
	Handling Drag Action

	Example 11 - Getting the Last Event in each Area

	AreaList Pro Constant List
	ALP Colors
	ALP Patterns
	ALP Events
	ALP Entry callback actions
	ALP Array commands
	ALP Sort commands
	ALP Column commands
	ALP Row commands
	ALP Entry commands
	ALP Misc commands
	ALP Cell commands
	ALP Drag commands
	ALP Field commands
	ALP Appearance Constants
	ALP Edit Menu Constants
	ALP Format/Style Constants

	AreaList Pro Command ReferenceAlphabetical

	46930AE2-4435-457B-908E-A2F77C20F5A1: On

